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Research summary for the last 3 years...

2021: Replace every CNN with a Transformer
2022: Replace every GAN with diffusion models
2023: Replace every NeRF with Gaussian splatting
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SSSSS market: Text2Image (video, 3D...)!

€he New Pork Times

IT HAPPENED ONLINE

MIDJOURNEY STABLEDIFFUSION How Is Everyone Making Those
AL Selfies?

Images generated with Lensa Al are all over social media, but at
what cost?

Behind the scenes of shooting the moon landing, Hollywood studio, 1969,
backstage photograph, astronaut actors, lighting

This part slides were heavily borrowed from https://cvpr2022-tutorial-diffusion- ‘ 2 ,
models.github.io/ and https://cvpr2023-tutorial-diffusion-models.github.io . THANK YOU!

variety of styles. LensaAI



https://cvpr2022-tutorial-diffusion-models.github.io/
https://cvpr2022-tutorial-diffusion-models.github.io/
https://cvpr2023-tutorial-diffusion-models.github.io/

DALL-E 2 Imagen

A group of teddy bears in suit in a corporate office celebrating

Exlodcy besk oA Bhalgtoalel In iMcs sqnare the birthday of their friend. There is a pizza cake on the desk.
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“Hierarchical Text-Conditional Image Generation with CLIP Latents” “Photorealistic Text-to-Image Diffusion Models with Deep
Ramesh et al., 2022 Language Understanding”, Saharia et al., 2022




The Workhorse: Diffusion Models

“Diffusion Models Beat GANs on Image Synthesis” “Cascaded Diffusion Models for High Fidelity Image Generation”
Dhariwal & Nichol, OpenAl, 2021 Ho et al., Google, 2021




Learning to generate by denoising

Denoising diffusion models consist of two processes:
Forward diffusion process that gradually adds noise to input

Reverse denoising process that learns to generate data by denoising

Forward diffusion process (fixed)

Reverse denoising process (generative)



Generator

G(2)

Discriminator

D(x)

GAN: AlersariaI x/ X —»
training

VAE: maximize x|, Encoder Z Decoder I
variational lower bound pg(x|z)
Flow-based models: X | —» Flow I 2 E— Inllfrse I
Invertible transform of f (x) f (Z)

distributions

Diffusion models: X0
Gradually add Gaussian - - - - - - - ¢ --------  "me uus “«-———————
noise and then reverse




Variational Autoencoders (VAES)

* We introduce an inference model g(z|x)
qp(2]x) = N (pe(x), Bg(x))

* This allows us to efficiently optimize the log-

likelihood, through the evidence lower
bound (ELBO).
Peo (X7 Z)]
1 > ELBO(x) = E, (1) |1
0g Pg,¢(X) > (%) = Eq, (21x) [Og 1o (@)
* We optimize g(z|x) and p(x,z) jointly w.r.t.
ELBO Inference model  Generative model

a(z|x) p(x,2)
* Bound is tight with the right g(z|x)



Hierarchical VAEs

* “Flat” VAEs suffer from simple priors

* Making both inference model and generative
model hierarchical

Q¢(Z1,2,3|X) = q¢(z1|X)q¢(zz|z1)q¢(z3|22)

po(2z1,2,3) = po(23)pe(22|23)pe(21|22)pe(X|21)

* Better likelihoods are achieved with hierarchies of
latent variables

Inference model  Generative model
qa(z|x) p(x,z)



VAEs: challenges

Bottleneck

* Optimization can be difficult for large models

* The ELBO enforces an information bottleneck
(through its loss function) at the latent variables 'z',
making VAE optimization prone to bad local
minima.

* Posterior collapse is a dreaded bad local
minimum where the latents do not transmit any
information.

Inference model Generative model
a(z|x) p(x,2)



Forward Diffusion Process

The formal definition of the forward process in T steps:

Forward diffusion process (fixed)

Data Noise

i ocps Diffused Data Distributions sy
q(xXe|xi—1) = N (x5 V1 — Bixe—1, BI) = q(X17|X0) = H (x¢t[xt-1)

Xt

Similar to the inference model in hierarchical VAEs

a(xp) a(x1) alx)  alxs) a(xr)



Sampling at arbitrary time step with “reparameterization trick”

Forward diffusion process (fixed)

Data Noise
t
Define oy = H(l — Bs) = q(x¢|x0) = N(x¢; vVarxg, (1 — ay)I))  (Diffusion Kernel)
s=1 The diffusion kernel is
Forsampling: x; =+var xg+ /(1 —at) € where €~ N(O, I) Gaussian convolution.

(3t values schedule (i.e., the noise schedule) is designed such that a7 — 0 and q(x7|xg) =~ N (x7;0,1))

Key trick: what happens if we t1f X1 and X5 are two independent normal random variables, with means u1, u2 and standard deviations o7,
add/merge two Gaussians? |02, then their sum X7 + X5 will also be normally distributed, Pl with mean 1 + u» and variance o7 + 03




Generative Learning by Denoising

Recall, that the diffusion parameters are designed such that ¢(x7) ~ N (x7;0,1))
Diffused Data Distributions

Generation:

Sample xp ~ N (x7;0,1)

X4
lteratively sample X¢_1 ~ q(X¢_1|X¢) % X
3 X X
X
True Denoising Dist.
a(xg)  alx) alxy)  alxs) q(xt)
e~ K~ K K K
q(xolx1) q(xq]x2) q(Xa|x3) q(xsx4) q(x11|xT)

In general, q(x;—1|x¢) o ¢(x¢—1)q(X¢|x¢—1) is intractable.

Can we approximate q(Xt_1|Xt)? Yes, we can use a Normal distribution if 3; is small in each forward diffusion step.



Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:

Reverse denoising process (generative)

-

Data
T
x7) =N (x7:0,1
plxr) = Nixr;0,1) o = Pe(Xor) = pX7) | | Po(Xe—1]%¢)
po(xt—1]xt) = N(x¢—1; i (xt, t)’, o 1) 1
1 — g (NN, Tl Simila.r to.the ger)erative
1 - at : /Bt (U-net’ Denoising Autoencoder) mOdEI in hlerarCh":aI VAES



Reverse Denoising Process

Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers to represent €y (x, t)

> €o(X4,1)

e m - —

Time Representatlon

Fully-connected
Layers

Time representation: sinusoidal positional embeddings or random Fourier features.

Time features are fed to the residual blocks using either simple spatial addition or using adaptive group normalization
layers. (see Dharivwal and Nichol NeurlPS 2021)




Training Loss (simplified)

- 1
Lo = Ex,e e, %0) — pro(x1,) ]
T L2 Z(xe, 1) 113
After applying the = By, 2H213 H2“ 1 (xt— 11_ i et>— ! (xt— 11 ot
- .. - 6 VALY V31—« Vv V31—«
variational lower bound|... (12_ o)’ t t
= Exye ———lle: — eo(xs, )]?]
- 20(1 — @) [| 203
(see details here) 1— oy)?
— = Fyx,e ( — t) > |e: — €o(/ Qsxo + /1 — dtet,t)||2]
- 20 (1 — ) || o3

Empirically, Ho et al. (2020) found that training the diffusion model works better with a simplified

objective that ignores the weighting term:

simple
L t

— Etw[l,T],x(),et

= Ei[1,7),%0,6

e — ealxe, 1)1

e — eo(v/@ixo + v/1— drer, )]



https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Denoising diffusion probabilistic models (DDPM)

Algorithm 1 Training Algorithm 2 Sampling
%: repeat (x0) 1: X ~N(0 I)
M 2: fort="T,...,1d
3: t~ Uniform({1,...,T}) 3 2o NOD
4 € N(O, I) 1 1-—
5: Take gradient descent step on 4 X1 = (xt — o €0 (Xtat)) + oz
Vo ||e — eo(Warxo + V1 — aye t)||2 5: end for
6: until converged 6: return xo

Full derivation: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/



https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Connection to VAEs

Diffusion models can be considered as a special form of hierarchical
VAEs.

However, in diffusion models:
The inference model is fixed: easier to optimize

The latent variables have the same dimension as the data.

The ELBO is decomposed to each time step: fast to train

Can be made extremely deep (even infinitely deep)

The model is trained with some reweighting of the ELBO.

Inference model Generative model

qa(z|x) p(x,2)
Vahdat and Kautz, NVAE: A Deep Hierarchical Variational Autoencoder, NeurlPS 2020
Senderby, et al.. Ladder variational autoencoders, NeurlPS 2016. 40




The generative learning trilemma

Likelihood-based models
(Variational Autoencoders
& Normalizing flows)

S R g e o - — — ——:,_-

Fast
sampling Coverage/
Diversity
Generative Denoising
Adversarial Diffusion
letworks (GANSs) Models
High
Quality Often requires 1000s of
Samples v network evaluations!

diffusion model sampling!



How to accelerate diffusion models?

[Image credit: Ben Poole, Mohammad Norouzi]

F Simple forward process slowly maps data to noise ﬁ

; Reverse process maps noise back to data where g
diffusion model is trained \

Naive acceleration methods, such as reducing diffusion time steps in
training or sampling every k time step in inference, lead to immediate
worse performance.

Diffusion model

We need something cleverer.

Given a limited number of functional calls, usually much less than
1000s, how to improve performance?



From DDPM to DDIM: Denoising diffusion implicit models

e @) @

352|331 030

Main Idea

Design a family of non-Markovian diffusion processes and corresponding reverse processes.

The process is designed such that the model can be optimized by the same surrogate objective as
the original diffusion model.

Lsimple(e) = ]Et,xo,e [“6 - 69(\/('?9(0 +v1— &ue, t)||2]

Therefore, can take a pretrained diffusion model but with more choices of sampling procedure.



From DDPM to DDIM: Denoising diffusion implicit models

\/ X() ~9
(X 1]x:) = \V x+\/l—a — ) ol |
P(Xi-1]%¢) ( t—1X0 t—1 \/l——a, h

- ... often using its deterministic form: 57 = 0, V¢

* With DDIM, it is possible to train the diffusion model up to any arbitrary number of
forward steps but only sample from a subset of steps in the generative process

* During Generation ( § < k ): DDIM is not a new model, just a special sampling way

—JI—a
Zk _akeg(cck))+ \/1—543 —0269(33k)+0'6
VvV Ok




—&— Ours [Song et al., ICLR 2021]

QU iC k D D I M Fa CtS : + noise configurations [Ho et al., NeurlPS 2020]

* Not a new model, just a new sampling

way — can apply to any pre-trained A e
diffusion model e.g. DDPM! Distance
(lower is better) 11

e Generate good samples (maybe \‘\.\.__,
slightly worse than DDPM) using a - — e
much fewer number of steps (20-100); # of steps
DDPM won’t work well with T<100!

* Have “consistency” property since the - When sigma =! 0 : stochastic process
generative process is deterministic,
meaning that multiple samples
conditioned on the same latent z DDPM -
should have similar high-level features. xT

* Because of the consistency, DDIM can _ ”_
do semantically meaningful latent - When sigma = 0 (DDIM case) : deterministic process

interpolation. - The same original noise Xt leads to the same image X0

* The default sampler in Stable Diffusion DDIM ' m
vl (now we have more!) T




Quick DDIM Facts:

Not a new model, just a new sampling
way — can apply to any pre-trained
diffusion model e.g. DDPM!

Generate good samples (maybe
slightly worse than DDPM) using a
much fewer number of steps (20-100);
DDPM won’t work well with T<100!

Have “consistency” property since the
generative process is deterministic,
meaning that multiple samples
conditioned on the same latent z

should have similar high-level features.

Because of the consistency, DDIM can
do semantically meaningful latent
interpolation.

The default sampler in Stable Diffusion
vl (now we have more!)

DDIM

Sampling steps

O

0

o




Distill diffusion models into models using just 4-8 sampling steps!

Distill a deterministic ODE sampler (i.e. DDIM sampler) to the same model architecture.
At each stage, a “student” model is learned to distill two adjacent sampling steps of the “teacher”

model to one sampling step.

At next stage, the “student” model from previous stage will serve as the new “teacher” model.

| € € €
~
z3/4 = f(21;M)1
\_/ Distillation >
Zy)2 = f(Z3/41 1)
v [ Distilation > >x = f(z1;0)
Zy/4 = f(Zl/21 n)
\_/ Distillation >
X = f(zl/41 n)
A 4 b 4 VW
=10 X X X

Distillation stage

Salimans & Ho, “Progressive distillation for fast sampling of diffusion models”, ICLR 2022.




Consistency Model (a special distillation)

Noise

Given a Probability Flow ODE that smoothly
converts data to noise, Consistency model
learns to map any point on the ODE trajectory
to its origin for generative modeling.

Models of these mappings are called
consistency models, as their outputs are
trained to be consistent for points on the
same trajectory.

They support fast one-step generation by
design, while still allowing multistep sampling
to trade compute for sample quality



Conditional Generation

T

Reverse process: py(xo.7|c) = p(xr) HP()(xt—] x¢,€),  Po(xt—1|%¢,€) = N(x¢—1; po(xt, ¢, €), Xp(x¢, ¢, €))
t=1

Variational
upper bound: Lg(xglc) = E, [LT(XO) + Z Dx1(q(x¢-1]%¢,%0) || po(xt—1[x¢,¢€)) — 108;P9(X0|X1,C)} :

t>1

Incorporate conditions into U-Net

Scalar conditioning: encode scalar as a vector embedding, simple spatial addition or adaptive
group normalization layers.

Image conditioning: channel-wise concatenation of the conditional image.

Text conditioning: single vector embedding - spatial addition or adaptive group norm / a seq of
vector embeddings - cross-attention.



Classifier guidance: Guiding Sampling usin the gradient of a trained classifier

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model (ug(z¢), 3¢ (x+)), classi-
fier p,(y|x:), and gradient scale s.

Input: class label y, gradient scale s
z7 < sample from N(0,I)
for all { from 7' to 1 do
Py X po(xe), Lo (x¢)
z—1 < sample from N (u + sX V,, logpys (y|zt), X)
end for
return z

Main ldea
For class-conditional modeling of p(X;|c), train an extra classifier p(c|x¢)

Mix its gradient with the diffusion/score model during sampling

Sample with a modified score: Vi, [logp(xt]C) = IOgP(C‘Xt)]



Classifier-free guidance: Implicit trick via Bayesian rule

Instead of training an additional classifier, get an “implicit classifier” by jointly training a conditional and unconditional
diffusion model:

Conditional diffusion model Unconditional diffusion model

In practice, p(Xt]C) and p(Xt) by randomly dropping the condition of the diffusion model at certain chance.

The modified score with this implicit classifier included is:

Vi [logp(xt|e) + wlogp(e|x:)] = Vx,[log p(xt|c) + w(log p(xi[c) — log p(x))]
= Vx,[(1 + w) log p(x¢|c) — wlog p(x)]



Latent Diffusion Models

Variational autoencoder + score-based prior

Encoder
Datax —

— Zo|X

—e= \qé\l )
ot

== 1 a

RCVCVOS‘t. W < - —
p(x|zo) SeeEh KL(q(zo|x)||p(zo))  Latent Space Generative Denoising
_ / N J
4 e
Variational Autoencoder Denoising Diffusion Prior
Advantages:

(1) The distribution of latent embeddings close to Normal distribution > Simpler denoising, Faster synthesis/
(2) Latent space > More expressivity and flexibility in design/
(3) Tailored Autoencoders > More expressivity, Application to any data type (graphs, text, 3D data, etc.) !

Vahdat et al., “Score-based generative modeling in latent space”, NeurlPS 2021.




Latent Diffusion Model (CVPR’22): Important Jump toward High-Resolution!

DDIM sampler
+ classifier-free
guidance +
many other
tweaks ...

gixel Spacg

4 ) Latent Space
rHE I Diffusion Process )I
2 Denoising U-Net €y 2T
il€D - @
K V K\V| KV

éondltlonm\

o

Text

Repres
entations

Images

e T

denoising step crossattention  switch  skip connection concat

70




Latent Diffusion Model (CVPR’22): Important Jump toward High-Resolution!

The seminal work from Rombach et al. CVPR 2022:

« Two stage training: train autoencoder first, then train the diffusion prior
* Focus on compression without of any loss in reconstruction quality

« Demonstrated the expressivity of latent diffusion models on many
conditional problems

The efficiency and expressivity of latent diffusion models +
open-source access fueled a large body of work in the
community (e.q. Stable Diffusion!)


https://arxiv.org/abs/2112.10752

Latent Diffusion Model (CVPR’22): Important Jump toward High-Resolution!

python scripts/txt2img.py --prompt "a sunset behind a mountain range, vector
image" --ddim_eta 1.0 --n_samples 1 --n_iter 1 --H 384 --W 1024 --scale 5.0






Stable Diffusion

paradise Text
cosmic
beach Encoder

Token
(CLIPText) ‘ /

-
Image Information Creator
(UNet + Scheduler)
| S— Image
UNet UNet i UNet Decoder
Step Step Step (Autoencoder
Y . =
information tensor information tensor

e |




Larger Text Encoders — Better Alignment, Better Fidelity

| { 1
—o— T5-Small
25 —o— T-Large
—e— T5-XL
i —e— T5-XXL
T é 20 | B
a
s NG :
\ =~
10
l \ |
0.22 0.24 0.26 0.28

From Google Imagen:

CLIP Score




A Few More
Essentials...

* How to “Personalize”
* How to “Control”

e How to “Erase”




Personalizing Your Diffusion: DreamBooth

Fine-Tuning Inference
Input Output
Images (~3-5) + .Uniq'ue .
subject’s class name identifier

¥ “:"-',' ot
Input images n the Accopolas i a doghouse  1n a bucket settang a hourcut




Personalizing Your Diffusion: DreamBooth

e e

A [V] backpack in the A wet [V] backpack A [V] backpack with the

Grand Canyon in water night sky

>

Input images

A [V] teapot floating A {ransparent [V] teapot A [V] teapot A [V] teapot floating
in milk with milk inside pouring tea in the sea



LoRA: Low-rank Adaptation for Fast Diffusion Fine-tuning




: Low-rank Adaptation for Fast Diffusion Fine-tuning

2,000 columns 2 columns A LoRA model fine-tunes a model by adding
2,000 columns its update weights to the pre-trained

matrices, but using low-rank compression

1,000 rows

Original weights

Latent Space | (Conditioning W I/%/ B 4
I—— Diffusion Process ———» Eemant'q — O |

Ma

z Denoising U-Net €y 2T Text 1

Repres Low-rank difference

entations

15

In Practice now LORA fine-tunes the cross-
attention layers (the QKV parts of the U-Net

g KV P, “a | noise predictor)

denoising step crossattention  switch  skip connection concat

Pixel Space




X

neural network

block

(a) Before

ControlNet

Zero conv Ol ution
X  (+

neural network

block (locked)

trainable copy

zero convolution

Time Encoder |

Prompt
1

Text Encoder [
i)

\

Time

Condition

l

zero convolution

Input
d Prompt&Time
SD Encoder Block 1 ) 55
64%64 )

SD Encoder Block 1
64x64 (trainable copy)

x3

[

SD Encoder Block 2 ) o I
32x32 '

SD Encoder Block 2

(" SD Encoder Block 3 |

16x16

[ SD Encoder . | <3
| Block _48x8 *

[ SD Middle
L Block 8x8

[ SD Decoder

32x32 (trainable copy) \ i
I

SD Encoder Block 3 1 .
16x16 (trainable copy)

SD Encoder Block 4

8x8 (trainable copy) i

SD Middle Block
8x8 (trainable copy)
zero convolution

\ Block_4 8x8 V/X

\ SD Decoder Block 3 |

3 o -
16x16 g4

" SD Decoder Bloicik_Z

32x32 -

SD Decoder Block 1
64x64

xJe—m——

V¥

Output

(a) Stable Diffusion

zero convolution | x3

zero convolution x3

zero convolution

zero convolution

(b) ControlNet

x3

x3



ControlNet

Q: If the weight of a conv layer is zero, the gradient will also be zero, and the network will not learn anything. Why "zero convolution" works?

A: This is wrong. Let us consider a very simple
y=wz+b
and we have
Oy/ow = z,0y/0x = w,0y/0b =1
and if w = 0and z # 0, then
Oy/0w # 0,0y/0x = 0,08y/0b # 0
which means as long as z # 0, one gradient descent iteration will make w non-zero. Then
Oy/0x # 0

so that the zero convolutions will progressively become a common conv layer with non-zero weights.



ControlNet (Canny Edge

Control Stable Diffusion with Canny Edge Maps Control Stable Diffusion with Canny Edge Maps
@ Image - 7 3 Image

Prompt

cute dog

Advanced options Advanced options




ControlNet (Sketch Lines)

Control Stable Diffusion with Hough Line Maps

WK/
TANINE
AN

.
A /\
I

N\

N

A7 | ) \
SN/ AN

Cartoon line drawing “1girl, masterpiece, best quality, ultra-detailed, illustration”



ControlNet (User Scribbles)

Control Stable Diffusion with Scribble Maps Control Stable Diffusion with Scribble Maps

B3 Image 7 B Image

g

Prompt

hot air balloon

Advanced options E “d Advanced options




Control Stable Diffusion with Human Pose

B I
@ Image P

Prompt

Chef in the kitchen

Advanced options

ControlNet (Human Pose)

Control Stable Diffusion with Human Pose

&3 Image

Prompt

An astronaut on the Moon

Advanced options




T21 Adapter

\/

Pre-trained
Text ———» ——— Image

Stable Diffusion

<
d L
S g K
.:J;',(. e
p <
P28

Not affect original network topology and
generation ability

~77M parameters and ~300M storage

Various adapters for different control conditions

More than one adapter can be easily com-
posed to achieve multi-condition control

SR NI AR

Condition : Only ~77M
' params. for each

Can be directly used on customed models




T21 Adapter

Text

Pre-trained
Stable Diffusion

'TELE

Fuser

HJ \ /J'bjhw \H

~ Spatial
Color Palette



Data Memorization in Diffusion Models

* Due to the likelihood-base objective function, diffusion models can "memorize” data.

« And with a higher chance than GANs!

* Nevertheless, alot of “memorized images” are highly-duplicated in the dataset.

Training Set Generated Image

Architecture Images Extracted FID

StyleGAN-ADA [43] 150 29

DiffBigGAN [82] 57 4.6

GANs E2GAN [69] 95 113

NDA [63] 70 12.6

WGAN-ALP [68] 49 130

OpenAI-DDPM [52] 301 29

Caption: Living in the light Prompt: DRLMs DDPM [33] 232 3.2

with Ann Graham Lotz Ann Graham Lotz

Carlini et al., "Extracting Training Data from Diffusion Models", arXiv 2023

30 A

Frequency

[
[e=)
1

[N
fe=)
1

10 30 100 300 1000 3000
Number of duplicates



Erasing Concepts in Diffusion Models

Erasing Artistic Style Erasing Objects
Original Model Edited Model Original Model Edited Model

Fine-tune a model to remove unwanted concepts. y
From original model, obtain score via negative CFG.

A new model is fine-tuned from the new score function.

Erased from model: Erased from model:
“Van Gogh”
* ..... (xt, c, 1)
; . Frozen
ee*(xp t) o ”[ee*(xp c, t) e 60*(xp t)] €g*(xt, t) Original SD
t S «—(x,, Co, 1)
B generated by 6 ¢ — “Van Gogh”, concept to erase Cor— ¥ t — Time step sampled uniformly

Gandikota et al., "Erasing Concepts from Diffusion Models", arXiv 2023




Is Diffusion Model Destined to be the Final Winner?

StyleGAN-T

Style GAN-T

StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis




Generative Al is revolutionizing the Al landscape EVERYDAY

o
AlexNet Transformers Codex, DALL-E What's next?
2014 2020 2022
2012 2017 2021 2023
AlphaGo AlphaFold, GPT-3
O.O.O ‘ DALLE-2, Imagen, Stable

Diffusion, Versatile Diffusion,
ChatGPT,...

Text-to-Video, Text-to-3D,
Text-to-Vector...




Application
Aspects, Now!

* Image Editing
e \Video Generation
3D Generation

e Ethic and Privacy Concerns




How to perform guided synthesis/editing?

I wantit to
look like ..

Input (guide)

Input (guide)

) &)



DEdit: Guided Image Synthesis and Editing with Stochastic

Differential Equations

First perturb the input with Gaussian noise and then progressively remove
the noise using a pretrained diffusion model.

Perturb with Noise Progressively denoise
/\
@
?%ke
®
Image ®

Input (guide)

v

Gradually projects the input to the manifold of natural images.

o O

Meng et al., "SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations", ICLR2022



https://arxiv.org/abs/2108.01073

Fine-grained control using strokes

-3 qwq

| wantit to
look like ...

Original User Input (guide) SDEdit Output
a photo looks
like my stroke
painting
0o
o — —
D’
o
Empty Canvas Painting User
5
Meng et al., "SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations", ICLR2022 7



https://arxiv.org/abs/2108.01073

Styletransfer with DDIM inversion

Source Latent Target

-

> B ;

A ——

— — 2
—b ——
- ——— S—— T——— ~p—

_— ODESolve(x(s);vés),O, 1y — @ —_— ODESolve(x(’);vét), ,0) —— @

oo O

Suet al., "Dual diffusion implicit bridges for image-to-image translation", ICLR 2023



https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2203.08382
https://arxiv.org/abs/2010.02502

Styletransfer with DDIM inversion

il WOEw e

Reference Image

204: Brown Bear

SN

273: Dingo Source Image 1 Target Image 1

Multi-domain translation Example-Guided Color Transfer

O O

Suet al., "Dual diffusion implicit bridges for image-to-image translation", ICLR 2023
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https://arxiv.org/abs/2010.02502

DiffEdit: Diffusion-based semanticimage
editing with mask guidance

Instead of asking users to provide the mask, the model will generate the mask
itself based on the caption and query.

Input Image Masked Diffusion Input Image Masked Diffusion

Encode Encode

Cption: A bowl of fruits | Generate Mask
Query: A bowl of pears Query: A basket of fruits

6
0

Couairon et al., "DiffEdit: Diffusion-based semantic image editing with mask guidance”, ICLR 2023



https://arxiv.org/abs/2210.11427

DiffEdit: Diffusion-based semanticimage
editing with maskguidance

Step 1: Compute Mask

Mask M

Estimate noise

conditioned to mztd
reference text R difference

X
Estimate noise
conditionally to
query O

Query Q: Zebra

Ref. Horse
TextR: or O

Step 2: Encode with DDIM until encoding ratio r

R~ >,

Couairon et al., "DiffEdit: Diffusion-based semantic image editing with mask guidance”, ICLR 2023

—


https://arxiv.org/abs/2210.11427

DiffEdit: Diffusion-based semantic image editing
with maskguida

Input ;’.'; A\ 87
Image g/ &
Text Query  cowboyhat  sunglasses—  cat — Shiba mo:rlltt:ifl R Ridin% ailstke
5 : — playing
(simplified) sunglasses cowboy hat Inu dog N —— gl e

SDEdit
(70%)

DiffEdit
Mask

DiffEdit :,:a ' fj

(90%)
Va0 G
- LYy

dis n Imaxdataset o

Couairon et al., "DiffEdit: Diffusion-based semantic image editing with mask guidance”, ICLR 2023



https://arxiv.org/abs/2210.11427

Imagic: Text-Based Real Image Editing with Diffusion Models

Input Image

Edited Image

Input Image Edited Image Input Image Edited Image

e

Target Tex: “A bird sprea.dmg “A person glvmg 4
wings” the thumbs up”

“A goat jumping
over a cat”

Tgt Txt: - A 31ttmg dog” “Two kissing “A children’s drawing
parrots” of a waterfall”

w o

Kawar et al., "Imagic: Text-Based Real Image Editing with Diffusion Models", CVWPR 2023



https://arxiv.org/abs/2210.09276

Imagic: Text-Based Real Image Editing with Diffusion Models

(A) Text Embedding Optimization (B) Model Fine-Tuning
e CRgERNSretien e o o~ o . o Reconstructionloss =
| 3 Pre-Trained $ Pre-Trained
a e g —*[ Diffusion Model 5 eop'»[ Diffusion Model
u (C) Interpolation & Generation
Target Emb ©igt i Optimized Emb €opt SR 7
"aiaf fj B : - g -
x| &= - e P g £ Fine-Tuned
| I. &} o ..ll. ROy P gl interpolate —3» Diffusion Process .
"A bird spreading wings."
etgfjx eopt Output

A~ O

Kawar et al., "Imagic: Text-Based Real Image Editing with Diffusion Models", CVWPR 2023



https://arxiv.org/abs/2210.09276

Prompt-to-Prompt Image Editing with Cross-
Attention Control

“Landscape with a house near a river
and o rainbow in the mexgrouné?

“a cake with.decorations.”

Schildren drawing of a castle next to a river.”
Jelly bedng

Hertz et al., "Prompt-to-Prompt Image Editing with Cross-Attention Control", ICLR2023

6) le))


https://prompt-to-prompt.github.io/ptp_files/Prompt-to-Prompt_preprint.pdf

Prompt-to-Prompt Image Editing with Cross-
Attention Control

Q
Pixel features  Pixel Queries Tokens Keys Y:;‘q’ @“’Q Tokens Values Output
(from Prompt) (from Prompt)
—> X | | —» X | | —»
¢ (2) Q K M, v ¢ (=)

Cross Attenetion Control

d _—a o "N
M, m ﬁ M; ‘ H/* New weighting ﬁ
M; M,

M,

Word Swap Adding a New Phrase Attention Re—weighting

Hertz et al., "Prompt-to-Prompt |Image Editing with Cross-Attention Control", ICLR2023

(o) o))


https://prompt-to-prompt.github.io/ptp_files/Prompt-to-Prompt_preprint.pdf

nstructPix2Pix: Learning to Follow Image Editing
nstructions

“Swap sunflowers with roses”

“Replace the fruits with cake”

- "Add fireworks to the sky” -

MR
TPRIAE

g -

Figure 1. Given an image and an instruction for how to edit that image, our model performs the appropriate edit. Our model does not
require full descriptions for the input or output image, and edits images in the forward pass without per-example inversion or fine-tuning.

Brooks et al., "Instructpix2pix: Leaming to follow image editing instructions”, CWPR2023

e))


https://prompt-to-prompt.github.io/ptp_files/Prompt-to-Prompt_preprint.pdf
http://openaccess.thecvf.com/content/CVPR2023/html/Brooks_InstructPix2Pix_Learning_To_Follow_Image_Editing_Instructions_CVPR_2023_paper.html
https://prompt-to-prompt.github.io/ptp_files/Prompt-to-Prompt_preprint.pdf

(a) Generate text edits:

Input Caption: “photograph of a girl riding a horse” » GPT-3

(b) Generate paired images:

Input Caption: ‘photograph of a girl riding a horse”
‘photograph of a girl riding a dragon

Edited Caption:

Training Data Generation

Instruction: “have her ride a dragon”
Edited Caption: p

Stable Diffusion
+ Prompt2Prompt

(c) Generated training examples:
“convert to brick”

“Color the cars pink” ‘Mate it lit by fireworks”

His %

“have her ride a dragon”
/T T g

Brooks et al., "Instructpix2pix: Leaming to follow image editing instructions”, CVPR 2023

hotograph of a girl riding a dragon”

nstructPix2Pix: Learning to Follow Image Editing
nstructions

Instruction-following Diffusion Model

(d) Inference on real images:

“turn her into a snake lady”

InstructPix2Pix =»

6
8


https://prompt-to-prompt.github.io/ptp_files/Prompt-to-Prompt_preprint.pdf
http://openaccess.thecvf.com/content/CVPR2023/html/Brooks_InstructPix2Pix_Learning_To_Follow_Image_Editing_Instructions_CVPR_2023_paper.html
https://prompt-to-prompt.github.io/ptp_files/Prompt-to-Prompt_preprint.pdf

Your Diffusion Model is Secretly a Zero-Shot Classifier

Text conditioning c:
a photo of a {class name}

ﬁ'\ "/
KV KV
Q Q

i -=-A - Xt Diffusion Model
" i Sample ¢t ~ [1,T]

Input llége X

Sam €~ O, I) o e

Li et al., "Your Diffusion Model is Secretly a Zero-Shot Classifier", arXiv 2023

Classification Objective
argmin (Et,e[”eg(xt, c) — e||2])
C

[(o )N e))


https://arxiv.org/abs/2303.16203

Versatile Diffusion: All in One

A dream of a ® There are stars that a child is
village in China, by watching about.
Caspar David ® Two young girls and a boy standing

near a star.
® Two young girls are watching a star.
® Kids standing for their stars.

Friedrich, matte
painting trending
on artstation-HQ.

® Houses on the lake with boats and
trees beside there with the mountains
on the background.

® House, mountain, boat, somewhere
near lake

® House on the cliff near the lake.

® Houses on the lake with the trees.

Grand nebula
in the universe.

(c) Image-to-Text

A house lake.
Ahouse on a @ on a lake

A picture in oil 2
painting style. lake. tall castle

Semantic Style

(d) Disentanglement (e) Dual-Guided Generation (f) Editable 12T21
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Better Diffusion Models Improve Adversarial Training

CIFAR-10({s0, € = 8/255)

CIFAR-10({5, e = 128/255) CIFAR-100(/s0, € = 8/255)

97
75 *
Y  (WRN-70-16) o5 * ) ¢ (WRN-70-16)
(WRN-28-10) 9 ° (WRN-28-10)VRN-70-16) < 73
& 2 - (WRN-28-10)
> 93 s
3 2 60
B 3
o Q 67
< <
=) S 65
8™ k>
@] O 631«
87 '
(2020 ®2021 ©2022 %Ours | |©2020 ®2021 ©2022 %Ours | ol [©2020 ®2021 ©2022 %Ours |
85 59 .
52 54 56 58 60 62 64 66 68 70 72 12 74 76 78 80 82 84 86 4 2% 28 30 32 34 36 38 40 42 44
Robust Accuracy (%) Robust Accuracy (%) Robust Accuracy (%)
72

Wang et al., "Better Diffusion Models Further Improve Adversarial Training", ICML 2023



https://arxiv.org/pdf/2302.04638.pdf

TEXAS ELECTRICAL AND COMPUTER ENGINEERING

From 2D to 3D: A “natural” idea?

“Text prompt” |::> Diffusion Model

e Train a 3D diffusion model just like image diffusion model

 Design proper diffusion architecture (still UNet?)
e Choose proper 3D representation

 Collect large 3D training corpus



Diffusion Models for Point Clouds

A set of points with location information.

(a) Voxel-Based Feature Aggregation (Coarse-Grained)

Po(Xe[Xt41)
@
T o ° Voxelize Convolve Devoxelize
ooooooooo ™ —_ - 5 S
L ]
p(XT) Xf_l’_lIXt) q(Xo)

.................................................................................................

(b) Point-Based Feature Transformation (Fine-Grained)

Procedure Point-Voxel CNN architecture

Zhou et al., "3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV 2021
Liu et al, “Point-Voxel CNN for Efficient 3D Deep Learning’, NeurlPS 2019




Diffusion Models for Point Clouds

Generation Completion

Zhou et al., "3D Shape Generation and Completion through Point-Voxel Diffusion", ICCV 2021




Diffusion Models for Point Clouds

Shape Latent _ Learnt Denoising

Shape Latent  [FNSSISITNNNIN  Shape Latent

Bmcoder Zo ~ Q(ZO |X) Denzoising Diffusion M:odel
Input Point 1
Cloud PVCNN
| L ~
p(2o) Diffusion p(zr)
---------- -
S
~
x’ S _ Learnt Denoising

Latent Point
Denoising Diffusion Model

D ———
Latent Point
Encoder

Diffusion _ P(hr|zo)

HIEP

A’
5l 0¢0
a

Reconstructed Reconstructed
Point Cloud Mesh

L] |
A A
-
- 3
— ;

Optional Surface
x ~ p(x|ho,Z0)  Reconstruction

Point cloud diffusion in the latent space

Zeng et al., "LION: Latent Point Diffusion Models for 3D Shape Generation", NeurlPS 2022




Diffusion Models for Point Clouds

Point-E uses a synthetic view from fine-tuned GLIDE, and then ’lifts” the image to a 3d point cloud.

Synthetic 3D RGB point
view cloud
. ¢
“A corgi” — —> * — —
Fine-tuned Yy Point cloud
GLIDE diffusion

predicted g,

N
|-

|

Transformer

A transformer-based architecture

Nichol et al., "Point-E: A System for Generating 3D Point Clouds from Complex Prompts", arXiv 2022




Diffusion Models for Other 3D Representations

 Triplanes, regularized RelL U Fields, the MLP of NeRFs...
« A good representation is important!

Latent noise Denoise 1000x Feature maps Triplanes 3 images

128><128><96/_\ 128x128x96 128x128x32
Generated Neural

Field

Occupancy Network

S Cxy 5 >
., % yé R——
Ta— Triplane | 2% |— i ; / N
» - AT

- it 0 )

ks % l A = ) —
e | N\ F \ /A ReB )

& / >H [ﬂ‘/ et
&Gy | N
- ; ;

DDPM Backbone
Reshape

Triplane diffusion

[
ot
l TS ¥ ¥ ¥ o
NOt regularized Regularized "| (T:ross‘At!enticn ?
‘ e 1 § 1
tpomecena (- [ -~ [ [EcoomdontsT]

PointConv 16k-1k

“ 3 ; L —
16k point | ° ‘ P \ o|le|le ’ ° ‘ ‘» a
cloud
g l\ » 3 A 4
AT\ | & & o J
% |
\ | 20 RGBA views with extra
L T XYZ coordinates per pixel

Implicit MLP of NeRFs

I
Regu
Shue et al., "3D Neural Field Generation using Triplane Diffusion"”, arXiv 2022

Yang et al., "Learning a Diffusion Prior for NeRFs", ICLR Workshop 2023
Jun and Nichol, "Shap-E: Generating Conditional 3D Implicit Functions", arXiv 2023




2D Diffusion Models for 3D Generation

--------------------

» We just discussed diffusion models directly on 3d :' %
However: NeRe Sge )
1 ///‘ ~

* Design neural architecture for 3D domain is harder v <N » :
. . . : Point cloud SDF :

* 3D data are way more flexible in representation and data . .
preprocessing is heavily demanded : :

« A sufficiently large 3D dataset is less realistic at present (too | '

many experiments on ShapeNet!)

» Can we use 2d diffusion models as a “prior” for 3d?

But....

-

800,000 FREE'3D MODELS

OBJAVERSE g

Objaverse 1.0 Objaverse XL LAION
1M 10M 400M




DreampFusion: where it all started

-\

\--; - L% ";’ - :
s \/ v K

(7

.\w

"~

%
|/ ,(1

Poole et al., "DreamFusion: Text-to-3D using 2D Diffusion"”, ICLR 2023




DreamFusion: Setup

« Suppose there is a text-to-image diffusion model.

» Goal: optimize NeRF parameter such that each angle “looks
good” from the text-to-image model.

 Unlike ancestral sampling (e.g., DDIM), the underlying
parameters are being optimized over some loss function.

/Score Distillation Sampling \

B Cr— iﬁﬁ

\_ Updates sample in pixel space: z;—1 = ddpm_update(z;) ) \Updates parameters with SGD: 0,1 = opt.step(6;, VoL(x ))/

(” Ancestral Samphng
e Rk TR AR

f '?" a ‘.'-'
. A‘q s
. e o*ﬂ ,‘ : '_"._

Poole et al., "DreamFusion: Text-to-3D using 2D Diffusion”, ICLR 2023




DreamFusion: Score Distillation Sampling

« Consider the diffusion model objective for a sample x:
Loitr(¢, %) = Eynra(0,1),ennr(0,1) [w(t)]l€g(ux + 01651) — €l3]

 Directly computing the gradient leads to a Jacobian term over the U-Net:
] Zt = dtx + OC

~ 0¢ 3 )t 0
Vo Lpitt(p, x = g(0)) = Es.c [’w(t) (€p(2t;,t) —€) %(Zztt Y1) 8—;(
h ng N =~

Noise Residual U-Net Jacobian Generator Jacobian

* However, it turns out we can consider removing the U-Net Jacobian!

VoLons(8,x = 90) 2 B [u(t) Golas 1) — ) 3]

Poole et al., "DreamFusion: Text-to-3D using 2D Diffusion”, ICLR 2023




DreamFusion: Score Distillation Sampling
« Given image distribution as diffusion model: €,(x|y) =~ Vlogp,(x|y)

. Maximal log-likelihood estimation: min E, [—log p,(g(0,¢)|y)]
0 b

Lyr=—logpx|y) <E,, [w(t)llet(atx +oely) — 8||%] = Lpg(x) (ELBO)
1L

€ ~|)’) ag(H, C) (Grad.)
0x 00

VoLpsy(x = g(0,¢)) = E,, [W(t)(et()"c' |y) — &) ?
1L

(0, c)

00

0
VHLSDS(x = g(@, C)) = [Et,e [W(l‘)(é‘t(fly) — 8) 5 ] (Drop UNet Jacobian)



DreamFusion in Text-to-3D

« SDS can be used to optimize a 3D representation, like NeRF.

~

rendering

’/

" P(camera) % ~N(OT)

colorc |~

Backpropagate onto NeRF weights

Poole et al., "DreamFusion: Text-to-3D using 2D Diffusion"”, ICLR 2023

» Random sample a camera pose and
render an image: x = g(6, ¢)

e Sample tand e ~ A (0,).

o letX = ax + ok

» Update 6 via SDS gradient:

de(X|y)
00

VoLsps = E, .. |w(@D)(e(X]y) — &)

« Stop gradient trick:
VoLsps = VoE, . . [stopgrad[e,X|y) — €]"g(6; c)]

"a DSLR photo of a

peacock on a surfboard" Imagen

z¢,t ~ U(0, 1) T (2t]y; t)




Extensions to SDS: Magic3D

2x speed and higher resolution
» Accelerate NeRF with Instant-NGP, for coarse representations.
* Optimize a fine mesh model with differentiable renderer.

after optimization H igh -resolution

Instant NGP : -
representation 3D mesh e 3D mesh " 3D mesh model

[ a stuffed grey rabbit holding a pretend carrot ]

Low-resolution
optimization

High-resolution
optlmlzatlon

camera

camera

@m mm

image diffusion

\ ESDs

Iatent diffusion

prlor - encoder prlor
update
\ update

Lin et al., "Magic3D: High-Resolution Text-to-3D Content Creation", CVPR 2023




Alternative to SDS: Score Jacobian Chaining

A different formulation, motivated from approximating 3D score.

Vo logﬁg(e) =E, [VO log ps (:B,r)]

010g,(6) _ . [Ologpo(@x) O
00 - 0x . 00
Vologp,(0) =E,| Vg _logp,(x,)- y - ].
N ~~ -4 . ~~ 4 S~~~
3D score 2D score; pretrained  renderer Jacobian

In principle, the diffusion model is the noisy 2D score (over clean images),
but in practice, the diffusion model suffers from out-of-distribution (OOD) issues!

For diffusion model on noisy images, the non-noisy images are OOD!

Wang et al., "Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D Generation", CVPR 2023.




Score Jacobian Chaining

« SJC approximates noisy score with “Perturb-and-Average Scoring’,
which is not present in SDS.

» Use score model on multiple noise-perturbed data, then average it.

PAAS(z, V20)

ZEn~n(0,1) [SCOTE(ZS + OM, )]

D(wblob +on, 0')

D(x, +on,o) — (x, + an)]
=[E.. >
! o
=En D(mﬂ’ + 07;', 0') — m‘rr] N\ [E]
o o

=0

PAAS helps guide updates with a better score.
PAAS(z,,V20) ~ V,_logp Vio(Tx)-

Wang et al., "Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D Generation", CVPR 2023.




Advancements on score distillation

e ProlificDreamer - Variational Score
Distillation (VSD):

DreamFusion

0g(0, ¢)
00

o VoLysp = E, o [WD(eE ¥) — 7% c,y))

. where e/2*4(% ¢, ) is camera pose

conditioned and fine-tuned from pre-
trained SD using LoRA.

« Wasserstein gradient flow to minimize
KL divergence between noisy rendered
image distribution and perturbed 2D ProlificDreamer produces sharper
image distribution and more photorealistic textures.

ProlificDreamer

Wang et al., ProlificDreamer: High-Fidelity and Diverse Text-to-3D Generation with Variational Score Distillation



Advancements on score distillation

« SteinDreamer - Stein Score Distillation (SSD)
dg(0, ¢)
00

« Control variate method via Stein identity for variance reduction on gradient
estimation.

 VyLgp = E, ., |WO(EeE y) + ed(X, 0,¢) + VP&, 0, ¢))

DreamFusion ProlificDreamer SteinDreamer w/ Depth
= . B . DreamFusion

s 3 ' N B " ot %*
< = 1 NN, - ol .
%5 _§ = - s ‘ = 18 1 === ProlificDreamer
S g 4 v L
232 ~ TN SteinDreamer w/ Depth
= Q
& E 9 174
Se e} 3
Q
A8 g 16
< S ‘
L2 = > 15 1
= 8 2] on
2 20 Q
g 3 % —
Py
0 < g
EEER: 131
S & g
5 g 2
TEZ 121 } } . } } }
g8 0 40 80 120 160 200 240

Wang et al., SteinDreamer: Variance Reduction for Text-to-3D Score Distillation via Stein Identity



Advancements on score distillation

e Entropic Score Distillation (ESD)
dg(d, c)

. Volpsp = [E,,C’g w(t)(e(X y) — /letLom(fé c,y)— (1 — A)GILO’"C’(S& y)) 5

e Recover the entropy maximization term for VSD when
minimizing the KL divergence to alleviate Janus problem.

2 a!( ||I
I\
B A
G o
<

DreamFusion

ProlificDreamer

urs

(0]

Wang et al., Taming Mode Collapse in Score Distillation for Text-to-3D Generation



Novel-view Synthesis with Diffusion Models

* These do not produce 3D as output, but synthesis the view at
different angles.

Watson et al., "Novel View Synthesis with Diffusion Models", ICLR 2023




3DIM

« Condition on a frame and two poses, predict another frame.

e UNet with frame cross-attention

| |: BigGAN residual block

D: self-attention block
@: frame cross-attention block

: weight sharing over frames

conditioning set

step 1

Sample based on stochastic conditions,
allowing the use of multiple conditional frames.

step 2
f—)%\
E /)
)
ﬁ/_/

Watson et al., "Novel View Synthesis with Diffusion Models", ICLR 2023




GenVS

« 3D-aware architecture with latent feature field.
» Use diffusion model to improve render quality based on structure.

Optional input view xJ”*  Latent Feature Field W Feature Image F
(128x128x3) (128x 128 x64x16) (128x128x16)

MLP f

Feature L2

Encoder T . :
< B

= Target view x™se

. (128 x128x3)

(N olume Rendering )

\
l U-Net U
‘\\/ Noisy target view y

(128 x 128 x 3)

Input view x"r
(128x128x3)

Chan et al., "Generative Novel View Synthesis with 3D-Aware Diffusion Models", arXiv 2023




NeuralLift-360 for 3D reconstruction

« SDS + Fine-tuned CLIP text embedding + Depth supervision

Volumetric
Rendering

Noise

»'/) ‘
Perturbation |*
- R > |

1
' CLIP

Xu et al., "NeuralLift-360: Lifting An_In-the-wild 2D Photo to A 3D Object with 360° Views", CVPR 2023




/ero 1-to-3

Generate novel view from 1 view and pose, with 2d model.
Then, run SJC/ SDS-like optimizations with camera view-conditioned model

Training using Objaverse dataset from pre-trained SD
Follow-up: Zero123++, MVDreamer ...

Input View (RGB) § @ * Zerolto3% VS
; 3 ol SJC

: V& Zero-1-to-3 & « © - : [‘&;ﬂ ) (‘R3, Ty)]
[ , (R, T)] e PRI - | .
E [ 8, Ry, T &, 2 MSE

Py g

VY Zero-1-t0-3 % 4
: SJC sr . 4;"? A -
. [Es » Ry, TD] put
» Zero-1-to-3 » E Rendering .
&,_"'D E
e Latent Diffusion Model \ Wﬂ"mmmm“" :
Gaussian Noise Output View (RGB)* Neural Field%%
Novel View Synthesis 3D Reconstruction

[1] Liu et al., Zero-1-to-3: Zero-shot One Image to 3D Object

[2] Shi et al., Zero123++: a Single Image to Consistent Multi-view Diffusion Base Model

[3] Shi et al., MVDream: Multi-view Diffusion for 3D Generation



Instruct NeRF2NeRF

Edit a 3D scene with text instructions

4y %W / ‘ | ’*u’ /A ‘ ,,/, e
Tu; n him into the “Make it look like a Makc it look like an  “Turn him into Lord  “Make him look like
Tolkien EIf” Fauvism painting” Edward Munch Painting” Voldemort™ Vincent Van Gogh”

Original NeRF

Haque et al., "Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions”, arXiv 2023




Instruct NeRF2NeRF

¥

v

s

K

f Original Dataset Image
3 o P '::\%?f

Conditioning
Signal \
Text Prompt

“Turn the bear into a grizzly bear”

Current NeRF Render —

Figure 2: Overview: Our method gradually updates a reconstructed NeRF scene by iteratively updating the dataset images while training

the NeRF: (1) an image is rendered from the scene at a training viewpoint, (2) it is edited by InstructPix2Pix given a global text instruction,
(3) the training dataset image is replaced with the edited image, and (4) the NeRF continues training as usual.

Haque et al., "Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions”, arXiv 2023




Choosing 3D representation

P(light) %

o« DreamFusion: Ref-NeRF as base = Plcamar
representation and apply lighting DreamFusion
augmentation.

o Magic3D [1]: coarse generation via
volumetric representation (NeRF) ->

refinement with differentiable mesh SR,
representation (DMTet). Magic3D
. Fa nta S i a 3 D [2] : d ise nta n gl e 3 D ‘ ’a highly detailed stone bust of Theodoros Kolokotronis”’ ‘
representation to geometry and *—ﬂ_gqa_ g w,'«zg .
. . ender 1 g J—T N4 k iks',: render i’rd/ stable diffusi
appearance (material) properties. g s e L e e
[1] Lin et al., Magic3D: High-Resolution Text-to-3D Content Creation Fantasia3D

[2] Chen et al., Fantasia3D: Disentangling Geometry and Appearance for High-quality Text-to-3D Content Creation



Text-to-Video Generation
From Text-to-Image Diffusion Models to Text-to-Video Diffusion Models




Video Diffusion Models

3D UNet from a 2D UNet.
e 3x3 2d conv to 1x3x3 3d conv.

» Factorized spatial and temporal attentions.

()% M2

Frame 1

Frame 2

Frame 3

[ Spatial Conv ]

[ Spatial Conv J

[ Spatial Conv ]

[ Spatial Attention J

[ Spatial Attention ]

[ Spatial Attention ]

Frame N

[ Spatial Conv ]

[ Spatial Attention ]

[

Temporal Attention / Convolution

J

lllustration on how the 3d attention is factorized (from Imagen video)

Ho et al., "Video Diffusion Models", NeurlPS 2022




Imagen Video: Large Scale Text-to-Video

e / cascade models in total.
« 1 Base model (16x40x24)

« 3 Temporal super-resolution models.

» 3 Spatial super-resolution models.

Input Text Prompt

SSR (1.2B)
32x320x192 6fps

T5-XXL (4.6B)

Base (5.6B)
16x40x24 3fps

SSR (1.4B)
32x80x48 6fps

TSR (780M)
64x320x192 12fps

TSR (1.7B)
32x40x24 6fps

TSR (630M)
128x320x192 24fps

Ho et al., "Imagen Video: High Definition Video Generation with Diffusion Models", 2022

SSR (340M)
128x1280x768 24fps




Make-A-Video: Text-to-Video Generation without Text-Video Data

Convert text into image embedding and train a video generator
conditioned on 1mage

Spatiotemporal Decoder Spatiotemporal Spatial
Super-Resolution Super-Resolution

| ) t Frame Interpolation

t
Input Text SR o S Rh

Figure 2: Make-A-Video high-level architecture. Given input text x translated by the prior P into
an image embedding, and a desired frame rate fps, the decoder D' generates 16 64 x 64 frames,
which are then interpolated to a higher frame rate by 1, and increased in resolution to 256 x 256
by SR; and 768 x 768 by SR, resulting in a high-spatiotemporal-resolution generated video 4.



Make-A-Video: Text-to-Video Generation without Text-Video Data

Limited video data: 2.3B Text-image Pair + 20M Video Data

Figure 3: The architecture and initialization scheme of the Pseudo-3D convolutional and at-
tention layers, enabling the seamless transition of a pre-trained Text-to-Image model to the
temporal dimension. (left) Each spatial 2D conv layer is followed by a temporal 1D conv layer.
The temporal conv layer is initialized with an identity function. (right) Temporal attention layers are
applied following the spatial attention layers by initializing the temporal projection to zero, resulting
in an identity function of the temporal attention blocks.
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Video LDM

Generative
Stochastic Processes
per Frame/Batch Element

Marginal Diffused
Data Distribution

Input Noise (for each
Frame/Batch Element)

Temporal Video

Fine-Tuning » LN
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After temporal video fine-tuning, samples are aligned to
form a video sequence (after applying the LDM decoder).

Before temporal video fine-tuning,
different batch samples are independent.

Video-aware
Discriminator

0/1

Fine-tune the decoder to be video-aware,
keeping encoder frozen

Interleave spatial and temporal layers.

The spatial layers are frozen, whereas
temporal layers are trained.

Temporal layers can be Conv3D or
Temporal attentions.

Context can be added for autoregressive
generation.

Blattmann et al., "Align your Latents: High-Resolution Video Synthesis with Latent Diffusion Models", CVPR 2023




Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot

Video Generators
A pretrained text-to-image diffusion model without any further fine-tuning or optimization

1. Encode motion dynamics in the latent codes
2. Reprogram each frame’s self-attention using a new cross-frame attention

Background Smoothing

o}, = DDIM_Backward(z}, At, SD) |

|

| 3% = Wi(zh) |
l
z% = DDPM_Forward(z}., At)

ST

_____________ Salient Object
Detector

ke M*
é fork =12 . imXT
Transformer Block x 2|

fork=2.3,....m

Text prompt: "A horse is galloping on the street”

Convolution
Cross-Attention

Cross-Frame Attention




Conditional and Specialized Text-to-Video

™ | Text2Video-Zero
Text prompt: "A P _
horse is galloping -——--—r==mrmmmfrmmmmmpimmme-: g
on the street" %
Condition: = gl |8
Canny o | A o o
edges, “+— | Cc S S
poses, §
etc. 2

Figure 4: The overview of Text2Video-Zero + ControlNet
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AnimateDiff: Animate Your Personalized Text-to-Image Diffusion
Models without Specific Tuning

Base T2I contributes to the appearance and train an additional module for the motion

Base T21

() Base T2I Pretrained Weights (frozen)
() Motion Modeling Module

Inference

Personalized T2I

(O) Weights of Personalized T2I



~C

Training Pipeline of AnimateDiit

2. Learn Motion Priors

1. Alleviate Negative Effects

3. (optional) Adapt to New Patterns

<prompts>
I I \4 i
sample )
< | ,’P' ﬁ
Video
S:mpled B S Dataset _-“ 5 .
rames % __..o-==""TT g "N i
‘...v.-::_‘_':::_-___________-_______-___________:::-. f’_' .............................................
- 2 i i 2 ! .
: rr;iltgr:lcaegers Self-/Cross-Attention E i Potion Module (Temporal Transformer) \l/ i 8 Pretra.me: Image( La):ersbffrozen) 1)
' Q = W9z + Adapter(z) |[i i ' Self- Proi. Ot : Domain Adapter trafna e at stage
—?{Rccht Block})I | 19 : Attention || (zero ii"nitializc) —:P 0 Motfon Module (trafnable at stage 2)
! z = Wproj.z + Adapter(z)|: : 2 e i () MotionLoRA (trainable at stage 3)
(. oo S CRO L L R RO :

Figure 3: Training pipeline of AnimateDiff. AnimateDiff consists of three training stages for the
corresponding component modules. Firstly, a domain adapter (Sec. 4.1) is trained to alleviate the
negative effects caused by training videos. Secondly, a motion module (Sec. 4.2) is inserted and
trained on videos to learn general motion priors. Lastly, MotionLoRA (Sec. 4.3) is trained on a few
reference videos to adapt the pre-trained motion module to new motion patterns.
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More Concurrent / Related Works

Input Video: "A is Model Inflation A is ridi
riding a bike on the road” e 11; ri m%:l
ke on the roa

£ s E
4o 3 * HIEIE
HIH e
— Sl15|]e
- w = - =
9 e '
Optimized unconditional Reconstruction branch
Cross Attention "’:)‘k""“‘“ ;Sh "idi"Z
Zy a\ Control abike on the road”
J\ \
DDIM Latent ‘\\‘ [ E* ﬁ 1
° - - -
[E—
Initialized unconditional Editable branch

Video-P2P: Cross-Attention Control
on text-to-video model

Fine-Tuning Inference

Reconstruction Loss XT steps

XT steps

XT steps

inversion

=
2
@
>
=
©

denoising

() conviok
() Aun Block

[ updated
[ Frozen

Given a text-video pair (e.g., “a man is skiing”) as input, our method leverages the pretrained T2I diffusion models for T2V generation. During fine-
tuning, we update the projection matrices in attention blocks using the standard diffusion training loss. During inference, we sample a novel video
from the latent noise inverted from the input video, guided by an edited prompt (e.g., “Spider Man is surfing on the beach, cartoon style”).

A man ic ckiing”

Cpider Man i ckiing on the

beach, cartoon ctyle”

Tune-A-Video: Fine-tune projection
matrices of the attention layers, from
text2image model to text2video model.

v v
QK QK.
Source Prompt : A silver jeep driving down a curvy road in the countryside
5 . fXhxw Cross-Attention Maps of Source Prompt
DDIM inversion T

xT

= ——a
u=T Source Self-Afiention Blending Mask 1 — M,

fXhxw
“‘[ O

xT b
Editing Self-Attention |,

Blending Mask M,

ta=T
DDIM Denoising

®

Blended | Self-Attention Cross-Attention

v Attention Blending Block

Target Prompt: A porsche car driving down a curvy road in the countryside

patial-Temporal
Self-Attention

Cross-Attention | Attention Map Fusion Attention Blending Block

FateZero: Store attention maps from
DDIM inversion for later use
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\/ﬂ

Pre-trained Image
Diffusion Model

/\

1

|

|

|

|

|

|

|

1

|

b |

Cross- Reconstracted Video |

Attention 1
Maps =

|

|

: |

2 |

1

|

|

|

|

|

|

1

|

|

1

1

“A caris moving on the road” vt Latait NGise

Temporal-aware
Cross-attention Guidance

Pre-trained Image
“A car is moving on the snow” ———————{  Diffusion Model

g
4
]
2
)
8
2
g

CICICIL

Input Video Null-text Embedding

Cross-
Frame
Attention
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Edited Video
(a) The Proposed Zero-shot Video Editing Pipeline ! (¢) Modified U-Net Block with the Same Weights

Vid2vid-zero: Learn a null-text embedding for
inversion, then use cross-frame attention with
original weights.
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Gen-1 (video-to-video)
 Transfer the style of a video using text prompts given a “driving video”

Prompt Driving Video (top) and Result (bottom)

a man using
a laptop in-
side a train,
anime style

a woman
and man
take selfies
while walk-
ing down
the street,
claymation

Esser et al., "Structure and Content-Guided Video Synthesis with Diffusion Models", arXiv 2023




Gen-1 (video-to-video)
« Condition on structure (depth) and content (CLIP) information.
« Depth maps are passed with latents as input conditions.

« CLIP image embeddings are provided via cross-attention blocks.
» During inference, CLIP text embeddings are converted to CLIP image embeddings.

Training Inference
(- )
Autoencoder / Loss \ / ( DDIM steps \ \
\ - — .
}- & | | v~ < Q
4 5 / \z() 2t \ /;1.,,(1,,1)) / ZO/
ey
= T s Ty =

Esser et al., "Structure and Content-Guided Video Synthesis with Diffusion Models", arXiv 2023




Gen-2 (text-to-video, and more)




Gen-2 (the latest release, Nov 02 2023)




1977

First film
featuring Al to
be selected for
preservation in

the National Film

Regqistry

Gen Al in Film Making?

The Terminator

1984
« From simple animation and quality enhancement, to Due to the
nowadays Scriptwriting, Visual Effects (CGl), Subtitling, f‘::rfc"r:?s’"y of “’l‘?
. . ' e, people
Scheduling, Trailers... BHill refer to any
— . digital totalitarian :
* Next billion-dollar question: end-to-end automated? force as “Skynet” The Matrix

1999

A quintessential
Hollywood vision
of what an Al
takeover would
look like




ICCV. 25

Short Realistic Videos
With Generative AI INTERNATIONAL 22:;:::2(.:3 ’ozr;:;OMPUTER VISION

* Rapidly generate assets

 Tell coherent stories and
even evoke emotions

* Even surprise us with its
creativity!




| Sci-Fi Trailer Made with Generative Al

“Al Star Wars Teaser”,
made by the community
with current available
Generative Al techniques




Challenges Along
the Road

* Generating highly accurate objects
especially human faces and bodies,
and their nuanced motions

* Creating complex, physically
grounded motions

* Maintaining a cohesive narrative
over the long time range




The Human Touch




The Ethical Concerns
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-~ CLOSER THAN WE THINK?Z _ .

ROBOT
DRIVING

Plans have already been perfected
for control devices that will make
intercity driving completely
automatic.

One system, devised by RCA's
famous Vladimir Zworykin, has
been tested on a Nebraska public
highway. Buried cables and loops
of wire radiate signals that guide

specially equipped car and dic-

Dee Motors has

Film Making
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