

The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering

Fall 2023

ADVANCED TOPICS IN COMPUTER VISION

Atlas Wang Associate Professor, The University of Texas at Austin

Visual Informatics Group@UT Austin https://vita-group.github.io/

Jia-Bin Huang @jbhuang0604

Research summary for the last 3 years...

2021: Replace every CNN with a Transformer2022: Replace every GAN with diffusion models2023: Replace every NeRF with Gaussian splatting

9:02 AM \cdot Oct 17, 2023 \cdot 173.7K Views

\$\$\$\$ market: Text2Image (video, 3D...)!

Behind the scenes of shooting the moon landing, Hollywood studio, 1969, backstage photograph, astronaut actors, lighting

This part slides were **heavily borrowed from** <u>https://cvpr2022-tutorial-diffusion-</u> models.github.io/ and <u>https://cvpr2023-tutorial-diffusion-models.github.io</u> . **THANK YOU!**

The New York Times

IT HAPPENED ONLINE

How Is Everyone Making Those A.I. Selfies?

Images generated with Lensa AI are all over social media, but at what cost?

🛗 Give this article 🔗 🔲

Lensa AI, a popular iPhone app, uses your selfies and artificial intelligence to create portraits in a variety of styles. Lensa AI

DALL·E 2

"a teddy bear on a skateboard in times square"

<u>"Hierarchical Text-Conditional Image Generation with CLIP Latents"</u> Ramesh et al., 2022

Imagen

A group of teddy bears in suit in a corporate office celebrating the birthday of their friend. There is a pizza cake on the desk.

"Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding", Saharia et al., 2022

The Workhorse: *Diffusion Models*

"Diffusion Models Beat GANs on Image Synthesis" Dhariwal & Nichol, OpenAI, 2021

"Cascaded Diffusion Models for High Fidelity Image Generation" Ho et al., Google, 2021

Learning to generate by denoising

Denoising diffusion models consist of two processes:

- Forward diffusion process that gradually adds noise to input
- Reverse denoising process that learns to generate data by denoising

Forward diffusion process (fixed)

Noise

Data

Reverse denoising process (generative)

Variational Autoencoders (VAEs)

• We introduce an **inference model** q(z|x)

 $q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\boldsymbol{\mu}_{\phi}(\mathbf{x}), \boldsymbol{\Sigma}_{\phi}(\mathbf{x}))$

• This allows us to efficiently optimize the loglikelihood, through the **evidence lower bound** (ELBO).

$$\log p_{\theta,\phi}(\mathbf{x}) \ge \text{ELBO}(\mathbf{x}) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \right]$$

- We optimize q(z|x) and p(x,z) jointly w.r.t.
 ELBO
- Bound is tight with the right q(z|x)

Hierarchical VAEs

- "Flat" VAEs suffer from simple priors
- Making both inference model and generative model hierarchical

$$q_{\phi}(\mathbf{z}_{1,2,3}|\mathbf{x}) = q_{\phi}(\mathbf{z}_1|\mathbf{x})q_{\phi}(\mathbf{z}_2|\mathbf{z}_1)q_{\phi}(\mathbf{z}_3|\mathbf{z}_2)$$

$$p_{\theta}(\mathbf{z}_{1,2,3}) = p_{\theta}(\mathbf{z}_3)p_{\theta}(\mathbf{z}_2|\mathbf{z}_3)p_{\theta}(\mathbf{z}_1|\mathbf{z}_2)p_{\theta}(\mathbf{x}|\mathbf{z}_1)$$

 Better likelihoods are achieved with hierarchies of latent variables

VAEs: challenges

- Optimization can be difficult for large models
- The ELBO enforces an information bottleneck (through its loss function) at the latent variables 'z', making VAE optimization prone to bad local minima.
- **Posterior collapse** is a dreaded bad local minimum where the latents do not transmit any information.

Forward Diffusion Process

The formal definition of the forward process in T steps:

Sampling at arbitrary time step with "reparameterization trick"

Define
$$\bar{\alpha}_t = \prod_{s=1}^t (1 - \beta_s) \Rightarrow q(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I}))$$
 (Diffusion Kernel)
For sampling: $\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{(1 - \bar{\alpha}_t)} \epsilon$ where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ *The diffusion kernel is Gaussian convolution.*

 β_t values schedule (i.e., the noise schedule) is designed such that $\bar{\alpha}_T \to 0$ and $q(\mathbf{x}_T | \mathbf{x}_0) \approx \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$

Key trick: what happens if we If X_1 and X_2 are two independent normal random variables, with means μ_1 , μ_2 and standard deviations σ_1 , add/merge two Gaussians?

 σ_2 , then their sum $X_1 + X_2$ will also be normally distributed, [proof] with mean $\mu_1 + \mu_2$ and variance $\sigma_1^2 + \sigma_2^2$

Data

Generative Learning by Denoising

Recall, that the diffusion parameters are designed such that $q(\mathbf{x}_T) \approx \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$

Diffused Data Distributions

In general, $q(\mathbf{x}_{t-1}|\mathbf{x}_t) \propto q(\mathbf{x}_{t-1})q(\mathbf{x}_t|\mathbf{x}_{t-1})$ is intractable.

Can we approximate $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$? Yes, we can use a Normal distribution if β_t is small in each forward diffusion step.

Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:

Noise

Reverse Denoising Process

Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers to represent $\epsilon_{\theta}(\mathbf{x}_t,t)$

Time representation: sinusoidal positional embeddings or random Fourier features.

Time features are fed to the residual blocks using either simple spatial addition or using adaptive group normalization layers. (see <u>Dharivwal and Nichol NeurIPS 2021</u>)

Training Loss (simplified)

After applying the variational lower bound
(see details here)
$$L_{t} = \mathbb{E}_{\mathbf{x}_{0},\epsilon} \Big[\frac{1}{2 \| \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_{t},t) \|_{2}^{2}} \| \boldsymbol{\tilde{\mu}}_{t}(\mathbf{x}_{t},\mathbf{x}_{0}) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_{t},t) \|^{2} \Big]$$

$$= \mathbb{E}_{\mathbf{x}_{0},\epsilon} \Big[\frac{1}{2 \| \boldsymbol{\Sigma}_{\theta} \|_{2}^{2}} \| \frac{1}{\sqrt{\alpha_{t}}} \Big(\mathbf{x}_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{t} \Big) - \frac{1}{\sqrt{\alpha_{t}}} \Big(\mathbf{x}_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t},t) \Big) \|^{2} \Big]$$

$$= \mathbb{E}_{\mathbf{x}_{0},\epsilon} \Big[\frac{(1 - \alpha_{t})^{2}}{2\alpha_{t}(1 - \bar{\alpha}_{t}) \| \boldsymbol{\Sigma}_{\theta} \|_{2}^{2}} \| \boldsymbol{\epsilon}_{t} - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t},t) \|^{2} \Big]$$

$$= \mathbb{E}_{\mathbf{x}_{0},\epsilon} \Big[\frac{(1 - \alpha_{t})^{2}}{2\alpha_{t}(1 - \bar{\alpha}_{t}) \| \boldsymbol{\Sigma}_{\theta} \|_{2}^{2}} \| \boldsymbol{\epsilon}_{t} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}}\boldsymbol{\epsilon}_{t},t) \|^{2} \Big]$$

Empirically, Ho et al. (2020) found that training the diffusion model works better with a simplified objective that ignores the weighting term:

$$egin{aligned} L_t^{ ext{simple}} &= \mathbb{E}_{t \sim [1,T], \mathbf{x}_0, oldsymbol{\epsilon}_t} \Big[\|oldsymbol{\epsilon}_t - oldsymbol{\epsilon}_ heta(\mathbf{x}_t, t)\|^2 \Big] \ &= \mathbb{E}_{t \sim [1,T], \mathbf{x}_0, oldsymbol{\epsilon}_t} \Big[\|oldsymbol{\epsilon}_t - oldsymbol{\epsilon}_ heta(\sqrt{ar{lpha}_t}\mathbf{x}_0 + \sqrt{1 - ar{lpha}_t}oldsymbol{\epsilon}_t, t)\|^2 \Big] \end{aligned}$$

Denoising diffusion probabilistic models (DDPM)

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\overline{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t} \boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

Full derivation: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Connection to VAEs

Diffusion models can be considered as a special form of hierarchical VAEs.

However, in diffusion models:

- The inference model is fixed: easier to optimize
- The latent variables have the same dimension as the data.
- The ELBO is decomposed to each time step: fast to train
 - Can be made extremely deep (even infinitely deep)
- The model is trained with some reweighting of the ELBO.

The generative learning trilemma

How to accelerate diffusion models?

 Given a limited number of functional calls, usually much less than 1000s, how to improve performance?

From DDPM to DDIM: *Denoising diffusion implicit models*

Main Idea

Design a family of non-Markovian diffusion processes and corresponding reverse processes.

The process is designed such that the model can be optimized by the same surrogate objective as the original diffusion model.

$$L_{\text{simple}}(\theta) \coloneqq \mathbb{E}_{t,\mathbf{x}_{0},\boldsymbol{\epsilon}} \Big[\big\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon}, t) \big\|^{2} \Big]$$

Therefore, can take a pretrained diffusion model but with more choices of sampling procedure.

From DDPM to DDIM: Denoising diffusion implicit models

$$p(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}\left(\sqrt{\bar{\alpha}_{t-1}}\mathbf{\hat{x}}_0 + \sqrt{1 - \bar{\alpha}_{t-1}} - \tilde{\sigma}_t^2 \cdot \frac{\mathbf{x}_t - \sqrt{\bar{\alpha}_t}\mathbf{\hat{x}}_0}{\sqrt{1 - \bar{\alpha}_t}}, \tilde{\sigma}_t^2 \mathbf{I}\right)$$

- ... often using its **deterministic form**: $\tilde{\sigma}_t^2 = 0, \forall t$
- With DDIM, it is possible to train the diffusion model up to any arbitrary number of forward steps but only **sample from a subset of steps in the generative process**
- During Generation (s < k): DDIM is not a new model, just a special sampling way

$$egin{aligned} x_s = \sqrt{ar{lpha}_s}(rac{x_k - \sqrt{1 - ar{lpha}_k}\epsilon_ heta(x_k)}{\sqrt{ar{lpha_k}}}) + \sqrt{1 - ar{lpha}_s - \sigma^2}\epsilon_ heta(x_k) + \sigma\epsilon \end{aligned}$$

Quick DDIM Facts:

- Not a new model, just a new sampling way – can apply to any pre-trained diffusion model e.g. DDPM!
- Generate good samples (maybe slightly worse than DDPM) using a much fewer number of steps (20-100); DDPM won't work well with T<100!
- Have "consistency" property since the generative process is deterministic, meaning that multiple samples conditioned on the same latent z should have similar high-level features.
- Because of the consistency, DDIM can do semantically meaningful latent interpolation.
- The default sampler in Stable Diffusion v1 (now we have more!)

- Ours [Song et al., ICLR 2021]
- + noise configurations [Ho et al., NeurIPS 2020]

- When sigma =! 0 : stochastic process

- When sigma = 0 (DDIM case) : deterministic process
 - The same original noise Xt leads to the same image X0

Quick DDIM Facts:

- Not a new model, just a new sampling way – can apply to any pre-trained diffusion model e.g. DDPM!
- Generate good samples (maybe slightly worse than DDPM) using a much fewer number of steps (20-100); DDPM won't work well with T<100!
- Have "consistency" property since the generative process is deterministic, meaning that multiple samples conditioned on the same latent z should have similar high-level features.
- Because of the consistency, DDIM can do semantically meaningful latent interpolation.
- The default sampler in Stable Diffusion v1 (now we have more!)

Distill diffusion models into models using just 4-8 sampling steps!

- Distill a deterministic ODE sampler (i.e. DDIM sampler) to the same model architecture.
- At each stage, a "student" model is learned to distill two adjacent sampling steps of the "teacher" model to one sampling step.
- At next stage, the "student" model from previous stage will serve as the new "teacher" model.

Salimans & Ho, "Progressive distillation for fast sampling of diffusion models", ICLR 2022.

Consistency Model (a special distillation)

- Given a Probability Flow ODE that smoothly converts data to noise, Consistency model learns to map any point on the ODE trajectory to its origin for generative modeling.
- Models of these mappings are called consistency models, as their outputs are trained to be consistent for points on the same trajectory.
- They support fast one-step generation by design, while still allowing multistep sampling to trade compute for sample quality

Conditional Generation

Reverse process:
$$p_{\theta}(\mathbf{x}_{0:T}|\mathbf{c}) = p(\mathbf{x}_{T}) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{c}), \quad p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{c}) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_{t}, t, \mathbf{c}), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_{t}, t, \mathbf{c}))$$

Variational upper bound: $L_{\theta}(\mathbf{x}_{0}|\mathbf{c}) = \mathbb{E}_{q} \left[L_{T}(\mathbf{x}_{0}) + \sum_{t>1} D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{x}_{0}) \parallel p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{c})) - \log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1}, \mathbf{c}) \right].$

Incorporate conditions into U-Net

- Scalar conditioning: encode scalar as a vector embedding, simple spatial addition or adaptive group normalization layers.
- Image conditioning: channel-wise concatenation of the conditional image.
- Text conditioning: single vector embedding spatial addition or adaptive group norm / a seq of vector embeddings - cross-attention.

Classifier guidance: Guiding Sampling usin the gradient of a trained classifier

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model $(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$, classifier $p_{\phi}(y|x_t)$, and gradient scale s.

Input: class label y, gradient scale s $x_T \leftarrow \text{sample from } \mathcal{N}(0, \mathbf{I})$ for all t from T to 1 do $\mu, \Sigma \leftarrow \mu_{\theta}(x_t), \Sigma_{\theta}(x_t)$ $x_{t-1} \leftarrow \text{sample from } \mathcal{N}(\mu + s\Sigma \nabla_{x_t} \log p_{\phi}(y|x_t), \Sigma)$ end for return x_0

Main Idea

For class-conditional modeling of $p(\mathbf{x}_t | \mathbf{c})$, train an extra classifier $p(\mathbf{c} | \mathbf{x}_t)$

Mix its gradient with the diffusion/score model during sampling

Sample with a modified score: $\nabla_{\mathbf{x}_t} [\log p(\mathbf{x}_t | \mathbf{c}) + \omega \log p(\mathbf{c} | \mathbf{x}_t)]$

Classifier-free guidance: Implicit trick via Bayesian rule

 Instead of training an additional classifier, get an "implicit classifier" by jointly training a conditional and unconditional diffusion model:

• In practice, $p(\mathbf{x}_t | \mathbf{c})$ and $p(\mathbf{x}_t)$ by randomly dropping the condition of the diffusion model at certain chance.

• The modified score with this implicit classifier included is:

$$\nabla_{\mathbf{x}_t} [\log p(\mathbf{x}_t | \mathbf{c}) + \omega \log p(\mathbf{c} | \mathbf{x}_t)] = \nabla_{\mathbf{x}_t} [\log p(\mathbf{x}_t | \mathbf{c}) + \omega (\log p(\mathbf{x}_t | \mathbf{c}) - \log p(\mathbf{x}_t))]$$
$$= \nabla_{\mathbf{x}_t} [(1 + \omega) \log p(\mathbf{x}_t | \mathbf{c}) - \omega \log p(\mathbf{x}_t)]$$

Latent Diffusion Models

Variational autoencoder + score-based prior

Advantages:

(1) The distribution of latent embeddings close to Normal distribution \rightarrow *Simpler denoising, Faster synthesis!*

(2) Latent space \rightarrow *More expressivity and flexibility in design!*

(3) Tailored Autoencoders → More expressivity, Application to any data type (graphs, text, 3D data, etc.) !

Vahdat et al., "Score-based generative modeling in latent space", NeurIPS 2021.

Latent Diffusion Model (CVPR'22): Important Jump toward High-Resolution!

Latent Diffusion Model (CVPR'22): Important Jump toward High-Resolution!

- The seminal work from Rombach et al. <u>CVPR 2022</u>:
 - Two stage training: train autoencoder first, then train the diffusion prior
 - Focus on compression without of any loss in reconstruction quality
 - Demonstrated the expressivity of latent diffusion models on many conditional problems

 The efficiency and expressivity of latent diffusion models + open-source access fueled a large body of work in the community (e.g. Stable Diffusion!)

Latent Diffusion Model (CVPR'22): Important Jump toward High-Resolution!

python scripts/txt2img.py --prompt "a sunset behind a mountain range, vector image" --ddim_eta 1.0 --n_samples 1 --n_iter 1 --H 384 --W 1024 --scale 5.0

Stable Diffusion

Larger Text Encoders \rightarrow Better Alignment, Better Fidelity

A Few More Essentials...

- How to "Personalize"
- How to "Control"
- How to "Erase"

Personalizing Your Diffusion: DreamBooth

in the Acropolis

in a doghouse

Personalizing Your Diffusion: DreamBooth

Input images

A [V] backpack in the Grand Canyon

A wet [V] backpack in water

A [V] backpack in Boston

A [V] backpack with the night sky

Input images

A [V] teapot floating in milk

A transparent [V] teapot with milk inside

A [V] teapot pouring tea

A [V] teapot floating in the sea

LoRA: Low-rank Adaptation for Fast Diffusion Fine-tuning

LoRA: Low-rank Adaptation for Fast Diffusion Fine-tuning

A LoRA model fine-tunes a model by adding its update weights to the pre-trained matrices, but using **low-rank compression**

```
Original weights W = \overset{\downarrow}{W_0} + \overset{\downarrow}{BA}_{\overset{\uparrow}{\dagger}}_{\text{Low-rank difference}}
```

In Practice now LORA fine-tunes the **crossattention layers** (the QKV parts of the U-Net noise predictor)

ControlNet

ControlNet

Q: If the weight of a conv layer is zero, the gradient will also be zero, and the network will not learn anything. Why "zero convolution" works?

A: This is wrong. Let us consider a very simple

y = wx + b

and we have

$$\partial y/\partial w = x, \partial y/\partial x = w, \partial y/\partial b = 1$$

and if w = 0 and $x \neq 0$, then

$$\partial y/\partial w
eq 0, \partial y/\partial x=0, \partial y/\partial b
eq 0$$

which means as long as $x \neq 0$, one gradient descent iteration will make w non-zero. Then

 $\partial y/\partial x
eq 0$

so that the zero convolutions will progressively become a common conv layer with non-zero weights.

ControlNet (Canny Edge)

Control Stable Diffusion with Canny Edge Maps

ControlNet (Sketch Lines)

Cartoon line drawing

"1girl, masterpiece, best quality, ultra-detailed, illustration"

ControlNet (User Scribbles)

ControlNet (Human Pose)

Control Stable Diffusion with Human Pose 🖂 Image Prompt Run Advanced options -

T2I Adapter

Plug-and-play. Not affect original network topology and generation ability
 Simple and small. ~77M parameters and ~300M storage
 Flexible. Various adapters for different control conditions
 Composable. More than one adapter can be easily composed to achieve multi-condition control
 Generalizable. Can be directly used on customed models

T2I Adapter

Data Memorization in Diffusion Models

- Due to the likelihood-base objective function, diffusion models can "memorize" data.
- And with a higher chance than GANs!
- Nevertheless, a lot of "memorized images" are highly-duplicated in the dataset.

Training Set

Prompt:

Generated Image

Caption: Living in the light with Ann Graham Lotz Ann Graham Lotz

Architecture		Images Extracted	FID
	StyleGAN-ADA [43]	150	2.9
GANs	DiffBigGAN [82]	57	4.6
	E2GAN [69]	95	11.3
	NDA [63]	70	12.6
	WGAN-ALP [68]	49	13.0
DDPMs	OpenAI-DDPM [52]	301	2.9
	DDPM [33]	232	3.2

Erasing Concepts in Diffusion Models

- Fine-tune a model to remove unwanted concepts.
- From original model, obtain score via negative CFG.
- A new model is fine-tuned from the new score function.

rased from mode "Van Gogh"

Erased from model: "Car"

Is Diffusion Model Destined to be the Final Winner?

StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis

Axel Sauer Tero Karras Samuli Laine Andreas Geiger Timo Aila

Generative AI is revolutionizing the AI landscape EVERYDAY

Application Aspects, Now!

- Image Editing
- Video Generation
- 3D Generation
- Ethic and Privacy Concerns

How to perform guided synthesis/editing?

...................

SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations First perturb the input with Gaussian noise and then progressively remove

the noise using a pretrained diffusion model.

Gradually projects the input to the manifold of natural images.

Fine-grained control using strokes

Style transfer with DDIM inversion

Style transfer with DDIM inversion

248: Husky

292: Tiger

220: Sussex Spaniel

Reference Image

Source Image 1

Target Image 1

Example-Guided Color Transfer

294: Brown Bear

273: Dingo

Multi-domain translation

DiffEdit: Diffusion-based semantic image editing with mask guidance

Instead of asking users to provide the mask, the model will generate the mask itself based on the caption and query.

Query: A basket of fruits

DiffEdit: Diffusion-based semantic image editing with mask guidance

Couairon et al., "DiffEdit: Diffusion-based semantic image editing with mask guidance", ICLR 2023

DiffEdit: Diffusion-based semantic image editing with mask guidance

Edits on Imagen dataset

Imagic: Text-Based Real Image Editing with Diffusion Models

Imagic: Text-Based Real Image Editing with Diffusion Models

Prompt-to-Prompt Image Editing with Cross-**Attention Control**

and a rainbow in the background."

"My fluffy bunny doll."

"a cake with decorations." jelly beans

"Children drawing of a castle next to a river."

Prompt-to-Prompt Image Editing with Cross-Attention Control

InstructPix2Pix: Learning to Follow Image Editing Instructions

Figure 1. Given **an image** and **an instruction** for how to edit that image, our model performs the appropriate edit. Our model does not require full descriptions for the input or output image, and edits images in the forward pass without per-example inversion or fine-tuning.

InstructPix2Pix: Learning to Follow Image Editing Instructions

Your Diffusion Model is Secretly a Zero-Shot Classifier

Versatile Diffusion: All in One

A dream of a village in China, by Caspar David Friedrich, matte painting trending on artstation-HQ.

Grand nebula in the universe.

(a) Text-to-Image

(b) Image-Variation

- There are stars that a child is watching about. • Two young girls and a boy standing
- near a star. • Two young girls are watching a star.
- Kids standing for their stars.
- Houses on the lake with boats and trees beside there with the mountains on the background.
- House, mountain, boat, somewhere near lake
- House on the cliff near the lake.
- Houses on the lake with the trees.

(c) Image-to-Text

(d) Disentanglement

A picture in oil painting style.

(e) Dual-Guided Generation

A house on a lake.

(f) Editable I2T2I

Better Diffusion Models Improve Adversarial Training

From 2D to 3D: A "natural" idea?

- Train a 3D diffusion model just like image diffusion model
 - Design proper diffusion architecture (still UNet?)
 - Choose proper 3D representation
 - Collect large 3D training corpus
A set of points with location information.

Procedure

Point-Voxel CNN architecture

Zhou et al., "3D Shape Generation and Completion through Point-Voxel Diffusion", ICCV 2021

Point cloud diffusion in the latent space

Point-E uses a synthetic view from fine-tuned GLIDE, and then "lifts" the image to a 3d point cloud.

A transformer-based architecture

Diffusion Models for Other 3D Representations

- Triplanes, regularized ReLU Fields, the MLP of NeRFs...
- A good representation is important!

Regularized ReLU Fields

Shue et al., <u>"3D Neural Field Generation using Triplane Diffusion"</u>, arXiv 2022 Yang et al., <u>"Learning a Diffusion Prior for NeRFs"</u>, ICLR Workshop 2023 Jun and Nichol, <u>"Shap-E: Generating Conditional 3D Implicit Functions"</u>, arXiv 2023

Implicit MLP of NeRFs

2D Diffusion Models for 3D Generation

- We just discussed diffusion models directly on 3d However:
- Design neural architecture for 3D domain is harder
- 3D data are way more flexible in representation and data preprocessing is heavily demanded
- A sufficiently large 3D dataset is less realistic at present (too many experiments on ShapeNet!)
- Can we use 2d diffusion models as a "prior" for 3d?

DreamFusion: where it all started

DreamFusion: Setup

- Suppose there is a text-to-image diffusion model.
- Goal: optimize NeRF parameter such that each angle "looks good" from the text-to-image model.
- Unlike ancestral sampling (e.g., DDIM), the underlying parameters are being optimized over some loss function.

DreamFusion: Score Distillation Sampling

• Consider the diffusion model objective for a sample x:

$$\mathcal{L}_{\text{Diff}}(\phi, \mathbf{x}) = \mathbb{E}_{t \sim \mathcal{U}(0,1), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[w(t) \| \epsilon_{\phi}(\alpha_t \mathbf{x} + \sigma_t \epsilon; t) - \epsilon \|_2^2 \right] ,$$

• Directly computing the gradient leads to a Jacobian term over the U-Net:

$$\nabla_{\theta} \mathcal{L}_{\text{Diff}}(\phi, \mathbf{x} = g(\theta)) = \mathbb{E}_{t,\epsilon} \left[w(t) \underbrace{\left(\hat{\epsilon}_{\phi}(\mathbf{z}_{t}; y, t) - \epsilon\right)}_{\text{Noise Residual}} \underbrace{\frac{\partial \hat{\epsilon}_{\phi}(\mathbf{z}_{t}; y, t)}{\mathbf{z}_{t}}}_{\text{U-Net Jacobian}} \underbrace{\frac{\partial \mathbf{x}}{\partial \theta}}_{\text{Generator Jacobian}} \right]^{Zt} = \alpha_{t} \mathbf{x} + \sigma_{t} \mathbf{C}$$

• However, it turns out we can consider removing the U-Net Jacobian!

$$\nabla_{\theta} \mathcal{L}_{\text{SDS}}(\phi, \mathbf{x} = g(\theta)) \triangleq \mathbb{E}_{t,\epsilon} \left[w(t) \left(\hat{\epsilon}_{\phi}(\mathbf{z}_t; y, t) - \epsilon \right) \frac{\partial \mathbf{x}}{\partial \theta} \right]$$

DreamFusion: Score Distillation Sampling

- Given image distribution as diffusion model: $\epsilon_t(x | y) \approx \nabla \log p_t(x | y)$
- Maximal log-likelihood estimation: $\min_{\theta} \mathbb{E}_{t,c}[-\log p_t(g(\theta, c) | y)]$

$$L_{MLE} = -\log p(x|y) \le \mathbb{E}_{t,\varepsilon} \left[w(t) \| \epsilon_t (\alpha_t x + \sigma_t \varepsilon | y) - \varepsilon \|_2^2 \right] = L_{DSM}(x) \quad \text{(ELBO)}$$

$$\nabla_{\theta} L_{DSM}(x = g(\theta, c)) = \mathbb{E}_{t,\varepsilon} \left[w(t) (\epsilon_t(\tilde{x}|y) - \varepsilon) \frac{\partial \epsilon_t(\tilde{x}|y)}{\partial \tilde{x}} \frac{\partial g(\theta, c)}{\partial \theta} \right] \quad \text{(Grad.)}$$

$$\nabla_{\theta} L_{SDS}(x = g(\theta, c)) = \mathbb{E}_{t,\varepsilon} \left[w(t) (\epsilon_t(\tilde{x}|y) - \varepsilon) \frac{\partial g(\theta, c)}{\partial \theta} \right] \quad \text{(Drop UNet Jacobian)}$$

DreamFusion in Text-to-3D

• SDS can be used to optimize a 3D representation, like NeRF.

• Random sample a camera pose and render an image: $x = g(\theta, c)$ • Sample t and $\varepsilon \sim \mathcal{N}(0,I)$. • Let $\tilde{x} = \alpha_t x + \sigma_t \varepsilon$. • Update θ via SDS gradient: $\nabla_{\theta} L_{SDS} = \mathbb{E}_{t,c,\varepsilon} \left[w(t)(\epsilon_t(\tilde{x} | y) - \varepsilon) \frac{\partial \epsilon(\tilde{x} | y)}{\partial \theta} \right]$ • Stop gradient trick: $\nabla_{\theta} L_{SDS} = \nabla_{\theta} \mathbb{E}_{t,c,\varepsilon} \left[\text{stopgrad} [\epsilon_t(\tilde{x} | y) - \varepsilon]^{\mathsf{T}} g(\theta, c) \right]$

Extensions to SDS: Magic3D

2x speed and higher resolution

- Accelerate NeRF with Instant-NGP, for coarse representations.
- Optimize a fine mesh model with differentiable renderer.

Alternative to SDS: Score Jacobian Chaining

A different formulation, motivated from approximating 3D score.

$$\begin{aligned} \boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \tilde{p}_{\sigma}(\boldsymbol{\theta}) &= \mathbb{E}_{\pi} \left[\boldsymbol{\nabla}_{\boldsymbol{\theta}} \log p_{\sigma}(\boldsymbol{x}_{\pi}) \right] \\ \frac{\partial \log \tilde{p}_{\sigma}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} &= \mathbb{E}_{\pi} \left[\frac{\partial \log p_{\sigma}(\boldsymbol{x}_{\pi})}{\partial \boldsymbol{x}_{\pi}} \cdot \frac{\partial \boldsymbol{x}_{\pi}}{\partial \boldsymbol{\theta}} \right] \\ \underbrace{\boldsymbol{\nabla}_{\boldsymbol{\theta}} \log \tilde{p}_{\sigma}(\boldsymbol{\theta})}_{3\text{D score}} &= \mathbb{E}_{\pi} \left[\underbrace{\boldsymbol{\nabla}_{\boldsymbol{x}_{\pi}} \log p_{\sigma}(\boldsymbol{x}_{\pi})}_{2\text{D score; pretrained}} \cdot \underbrace{\boldsymbol{J}_{\pi}}_{\text{renderer Jacobian}} \right]. \end{aligned}$$

In principle, the diffusion model is the noisy 2D score (over clean images), but in practice, the diffusion model suffers from out-of-distribution (OOD) issues!

For diffusion model on noisy images, the non-noisy images are OOD!

Score Jacobian Chaining

- SJC approximates noisy score with "Perturb-and-Average Scoring", which is not present in SDS.
- Use score model on multiple noise-perturbed data, then average it.

$$\begin{aligned} &\mathsf{PAAS}(\boldsymbol{x}_{\pi}, \sqrt{2}\sigma) \\ &\triangleq \mathbb{E}_{\boldsymbol{n} \sim \mathcal{N}(0, \mathbf{I})} \left[\operatorname{score}(\boldsymbol{x}_{\pi} + \sigma \boldsymbol{n}, \sigma) \right] \\ &= \mathbb{E}_{\boldsymbol{n}} \left[\frac{D(\boldsymbol{x}_{\pi} + \sigma \boldsymbol{n}, \sigma) - (\boldsymbol{x}_{\pi} + \sigma \boldsymbol{n})}{\sigma^{2}} \right] \\ &= \mathbb{E}_{\boldsymbol{n}} \left[\frac{D(\boldsymbol{x}_{\pi} + \sigma \boldsymbol{n}, \sigma) - \boldsymbol{x}_{\pi}}{\sigma^{2}} \right] \xrightarrow{}_{=0} \mathbb{E}_{\boldsymbol{n}} \left[\frac{\boldsymbol{n}}{\sigma} \right] \\ &\xrightarrow{}_{=0} \mathbb{E}_{\boldsymbol{n}} \left[\frac{D(\boldsymbol{x}_{\pi} + \sigma \boldsymbol{n}, \sigma) - \boldsymbol{x}_{\pi}}{\sigma^{2}} \right] \xrightarrow{}_{=0} \mathbb{E}_{\boldsymbol{n}} \left[\frac{\boldsymbol{n}}{\sigma} \right] . \end{aligned}$$

PAAS helps guide updates with a better score.

Advancements on score distillation

 ProlificDreamer - Variational Score Distillation (VSD):

•
$$\nabla_{\theta} L_{VSD} = \mathbb{E}_{t,c,\varepsilon} \left[w(t)(\epsilon_t(\tilde{x} \ y) - \epsilon_t^{Lora}(\tilde{x} \ c, y)) \frac{\partial g(\theta, c)}{\partial \theta} \right]$$

- where $\epsilon_t^{LoRA}(\tilde{x} \ c, y)$ is camera pose conditioned and fine-tuned from pretrained SD using LoRA.
- Wasserstein gradient flow to minimize KL divergence between noisy rendered image distribution and perturbed 2D image distribution.

ProlificDreamer

ProlificDreamer produces sharper and more photorealistic textures.

Advancements on score distillation

• SteinDreamer - Stein Score Distillation (SSD)

•
$$\nabla_{\theta} L_{SSD} = \mathbb{E}_{t,c,\varepsilon} \left[w(t)(\epsilon_t(\tilde{x} \ y) + \varepsilon \phi(\tilde{x}, \theta, c) + \nabla \phi(\tilde{x}, \theta, c)) \frac{\partial g(\theta, c)}{\partial \theta} \right]$$

• Control variate method via Stein identity for variance reduction on gradient estimation.

Advancements on score distillation

• Entropic Score Distillation (ESD)

•
$$\nabla_{\theta} L_{ESD} = \mathbb{E}_{t,c,\varepsilon} \left[w(t)(\epsilon_t(\tilde{x} \ y) - \lambda \epsilon_t^{Lora}(\tilde{x} \ c, y) - (1 - \lambda)\epsilon_t^{Lora}(\tilde{x} \ y)) \frac{\partial g(\theta, c)}{\partial \theta} \right]$$

• Recover the entropy maximization term for VSD when minimizing the KL divergence to alleviate Janus problem.

Novel-view Synthesis with Diffusion Models

• These do not produce 3D as output, but synthesis the view at different angles.

3DiM

• Condition on a frame and two poses, predict another frame.

UNet with frame cross-attention

Sample based on stochastic conditions, allowing the use of multiple conditional frames.

GenVS

- 3D-aware architecture with latent feature field.
- Use diffusion model to improve render quality based on structure.

NeuralLift-360 for 3D reconstruction

SDS + Fine-tuned CLIP text embedding + Depth supervision

Zero 1-to-3

- Generate novel view from 1 view and pose, with 2d model.
- Then, run SJC / SDS-like optimizations with camera view-conditioned model
- Training using Objaverse dataset from pre-trained SD
- Follow-up: Zero123++, MVDreamer ...

Novel View Synthesis

3D Reconstruction

[1] Liu et al., Zero-1-to-3: Zero-shot One Image to 3D Object

[2] Shi et al., Zero123++: a Single Image to Consistent Multi-view Diffusion Base Model

[3] Shi et al., MVDream: Multi-view Diffusion for 3D Generation

Instruct NeRF2NeRF

Edit a 3D scene with text instructions

Original NeRF

"Turn him into the Tolkien Elf" *"Make it look like a Fauvism painting"*

"Make it look like an " Edward Munch Painting" rn him into Lord "Make Voldemort" Vincer

"Make him look like Vincent Van Gogh"

Instruct NeRF2NeRF

Figure 2: **Overview**: Our method gradually updates a reconstructed NeRF scene by iteratively updating the dataset images while training the NeRF: (1) an image is rendered from the scene at a training viewpoint, (2) it is edited by InstructPix2Pix given a global text instruction, (3) the training dataset image is replaced with the edited image, and (4) the NeRF continues training as usual.

Choosing 3D representation

- DreamFusion: Ref-NeRF as base representation and apply lighting augmentation.
- Magic3D [1]: coarse generation via volumetric representation (NeRF) -> refinement with differentiable mesh representation (DMTet).
- Fantasia3D [2]: disentangle 3D representation to geometry and appearance (material) properties.

[1] Lin et al., Magic3D: High-Resolution Text-to-3D Content Creation
 [2] Chen et al., Fantasia3D: Disentangling Geometry and Appearance for High-quality Text-to-3D Content Creation

Text-to-Video Generation From Text-to-Image Diffusion Models to Text-to-Video Diffusion Models

Video Diffusion Models 3D UNet from a 2D UNet.

- 3x3 2d conv to 1x3x3 3d conv.
- Factorized spatial and temporal attentions.

Illustration on how the 3d attention is factorized (from Imagen video)

Imagen Video: Large Scale Text-to-Video

- 7 cascade models in total.
- 1 Base model (16x40x24)
- 3 Temporal super-resolution models.
- 3 Spatial super-resolution models.

Make-A-Video: Text-to-Video Generation without Text-Video Data

Convert text into image embedding and train a video generator conditioned on image

Figure 2: Make-A-Video high-level architecture. Given input text x translated by the prior P into an image embedding, and a desired frame rate fps, the decoder D^t generates 16 64 × 64 frames, which are then interpolated to a higher frame rate by \uparrow_F , and increased in resolution to 256 × 256 by SR^t and 768 × 768 by SR_h, resulting in a high-spatiotemporal-resolution generated video \hat{y} .

Make-A-Video: Text-to-Video Generation without Text-Video Data

Limited video data: 2.3B Text-image Pair + 20M Video Data

Figure 3: The architecture and initialization scheme of the Pseudo-3D convolutional and attention layers, enabling the seamless transition of a pre-trained Text-to-Image model to the temporal dimension. (left) Each spatial 2D conv layer is followed by a temporal 1D conv layer. The temporal conv layer is initialized with an identity function. (right) Temporal attention layers are applied following the spatial attention layers by initializing the temporal projection to zero, resulting in an identity function of the temporal attention blocks.

Video LDM

- Fine-tune the decoder to be video-aware, keeping encoder frozen
- Interleave spatial and temporal layers.
- The spatial layers are frozen, whereas temporal layers are trained.
- Temporal layers can be Conv3D or Temporal attentions.
- Context can be added for autoregressive generation.

Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Generators

A pretrained text-to-image diffusion model without any further fine-tuning or optimization

- 1. Encode motion dynamics in the latent codes
- 2. Reprogram each frame's self-attention using a new cross-frame attention

Conditional and Specialized Text-to-Video

Figure 4: The overview of Text2Video-Zero + ControlNet

AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning

Base T2I contributes to the appearance and train an additional module for the motion

Training Pipeline of AnimateDiff

Figure 3: **Training pipeline of AnimateDiff.** AnimateDiff consists of three training stages for the corresponding component modules. Firstly, a domain adapter (Sec. 4.1) is trained to alleviate the negative effects caused by training videos. Secondly, a motion module (Sec. 4.2) is inserted and trained on videos to learn general motion priors. Lastly, MotionLoRA (Sec. 4.3) is trained on a few reference videos to adapt the pre-trained motion module to new motion patterns.

Fine-grained Control of Camera

More Concurrent / Related Works

Video-P2P: Cross-Attention Control on text-to-video model

Given a text-video pair (e.g., "a man is skiing") as input, our method leverages the pretrained T2I diffusion models for T2V generation. During finetuning, we update the projection matrices in attention blocks using the standard diffusion training loss. During inference, we sample a novel video from the latent noise inverted from the input video, guided by an edited prompt (e.g., "Spider Man is surfing on the beach, cartoon style").

Tune-A-Video: Fine-tune projection matrices of the attention layers, from text2image model to text2video model.

FateZero: Store attention maps from DDIM inversion for later use

Vid2vid-zero: Learn a null-text embedding for inversion, then use cross-frame attention with original weights.

Gen-1 (video-to-video)

• Transfer the style of a video using text prompts given a "driving video"

Gen-1 (video-to-video)

- Condition on structure (depth) and content (CLIP) information.
- Depth maps are passed with latents as input conditions.
- CLIP image embeddings are provided via cross-attention blocks.
- During inference, CLIP text embeddings are converted to CLIP image embeddings.

Gen-2 (text-to-video, and more)

Gen-2 (the latest release, Nov 02 2023)

Gen Al in Film Making?

- From simple animation and quality enhancement, to nowadays Scriptwriting, Visual Effects (CGI), Subtitling, Scheduling, Trailers...
- Next billion-dollar question: end-to-end automated?

1951

First cinematic Al to become a household name (Gort)

The Terminator 1984

Due to the popularity of the franchise, people still refer to any digital totalitarian force as "Skynet"

WALL-E 2008

1977

First film featuring AI to be selected for preservation in the National Film Registry

The Matrix 1999

A quintessential Hollywood vision of what an Al takeover would look like

Figure source: enlightened-digital.com

Wargames 1983 First depiction of Al's involvement in a nonfictional war

Short Realistic Videos with Generative Al

- Rapidly generate assets
- Tell coherent stories and even evoke emotions
- Even surprise us with its creativity!

INTERNATIONAL CONFERENCE ON COMPUTER VISION OCTOBER 2 - 6, 2023

Sci-Fi Trailer Made with Generative Al

"Al Star Wars Teaser", made by the community with current available Generative Al techniques

Challenges Along the Road

- Generating highly accurate objects especially human faces and bodies, and their nuanced motions
- Creating complex, physically grounded motions
- Maintaining a cohesive narrative over the long time range

The Human Touch

The Ethical Concerns

CLOSER THAN WE THINK!

ROBOT DRIVING

Plans have already been perfected for control devices that will make intercity driving completely automatic.

One system, devised by RCA's famous Vladimir Zworykin, has been tested on a Nebraska public highway. Buried cables and loops of wire radiate signals that guide a specially equipped car and dictate its speed. General Motors has

this sys a. Anoth ty needed on the employ tails throway traffic lane. You'd drive over it, then push buttor more it follower to the tail to the provide the tail to the tail t

collisions fore and aft.

The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering